日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 10、已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式ax2-ax+1>0對?x∈R恒成立.若p且q為假,p或q為真,求a的取值范圍.
          分析:先解命題,再研究命題的關(guān)系,函數(shù)y=ax在R上單調(diào)遞增,由指數(shù)函數(shù)的單調(diào)性解決;等式ax2-ax+1>0對?x∈R恒成立,用函數(shù)思想,又因為是對全體實數(shù)成立,可用判斷式法解決,若p且q為假,p或q為真,兩者是一真一假,計算可得答案.
          解答:解:∵y=ax在R上單調(diào)遞增,∴a>1;
          又不等式ax2-ax+1>0對?x∈R恒成立,
          ∴△<0,即a2-4a<0,∴0<a<4,
          ∴q:0<a<4.
          而命題p且q為假,p或q為真,那么p、q中有且只有一個為真,一個為假.
          ①若p真,q假,則a≥4;
          ②若p假,q真,則0<a≤1.
          所以a的取值范圍為(0,1]∪[4,+∞).
          點評:本題通過邏輯關(guān)系來考查了函數(shù)單調(diào)性和不等式恒成立問題,這樣考查使題目變得豐富多彩,考查面比較廣.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,q:設(shè)函數(shù)y=
          2x-2ax≥2a
          2ax<2a
          對任意的x,恒有y>1.若p∧q為假,p∨q為真,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,設(shè)命題p:函數(shù)y=(
          1
          a
          )x
          為增函數(shù).命題q:當(dāng)x∈[
          1
          2
          ,2]時函數(shù)f(x)=x+
          1
          x
          1
          a
          恒成立.如果p∨q為真命題,p∧q為假命題,求a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,q:不等式x+|x-2a|>1的解集為R,若p和q中有且只有一個命題為真命題,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)增;命題q:不等式ax2-ax+1>0對任意實數(shù)x恒成立.若p∧q假,p∨q真,則a的取值范圍為
          (0,1]∪[4,+∞)
          (0,1]∪[4,+∞)

          查看答案和解析>>

          同步練習(xí)冊答案