日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (Ⅰ)若,求的單調(diào)性和極值;

          (Ⅱ)若函數(shù)至少有1個(gè)零點(diǎn),求的取值范圍.

          【答案】(Ⅰ)上單調(diào)遞減,在上單調(diào)遞增,極小值為-2,無(wú)極大值 (Ⅱ)

          【解析】

          (Ⅰ)求導(dǎo)得到,分別得到當(dāng)時(shí),,當(dāng)時(shí),,判斷出單調(diào)性,從而得到其極值;

          (Ⅱ)根據(jù)題意得到,令,求導(dǎo)得到,由,令,由零點(diǎn)存在定理得到存在,使得,由得到的最小值,再對(duì)的零點(diǎn)進(jìn)行分類(lèi)討論,得到答案.

          (Ⅰ)當(dāng)時(shí),,

          當(dāng)時(shí),,

          ,

          當(dāng)時(shí),,,

          上單調(diào)遞減,在上單調(diào)遞增

          處取得極小值,極小值為,無(wú)極大值

          (Ⅱ)∵,

          ,

          ,當(dāng)時(shí),,

          單調(diào)遞增,

          ,,

          ∴存在,使得

          且當(dāng)時(shí),,即,

          當(dāng)時(shí),,即

          ,,

          ∴當(dāng)時(shí),;

          當(dāng)時(shí),,

          上單調(diào)遞減,在上單調(diào)遞增

          處取得最小值

          ,

          ,即,

          ,即

          ∴當(dāng)時(shí),函數(shù)無(wú)零點(diǎn),

          當(dāng)時(shí),∵

          ∴函數(shù)至少有1個(gè)零點(diǎn),

          的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓,動(dòng)圓C與圓都相切,則動(dòng)圓C的圓心軌跡E的方程為________________;斜率為的直線(xiàn)l與曲線(xiàn)E僅有三個(gè)公共點(diǎn),依次為PQ,R,則的值為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某高中數(shù)學(xué)建模興趣小組的同學(xué)為了研究所在地區(qū)男高中生的身高與體重的關(guān)系,從若干個(gè)高中男學(xué)生中抽取了1000個(gè)樣本,得到如下數(shù)據(jù).

          數(shù)據(jù)一:身高在(單位:)的體重頻數(shù)統(tǒng)計(jì)

          體重

          人數(shù)

          20

          60

          100

          100

          80

          20

          10

          10

          數(shù)據(jù)二:身高所在的區(qū)間含樣本的個(gè)數(shù)及部分?jǐn)?shù)據(jù)

          身高

          平均體重

          45

          53.6

          60

          75

          1)依據(jù)數(shù)據(jù)一將上面男高中生身高在(單位:)體重的頻率分布直方圖補(bǔ)充完整,并利用頻率分布直方圖估計(jì)身高在(單位:)的中學(xué)生的平均體重;(保留小數(shù)點(diǎn)后一位)

          2)依據(jù)數(shù)據(jù)一、二,計(jì)算身高(取值為區(qū)間中點(diǎn))和體重的相關(guān)系數(shù)約為0.99,能否用線(xiàn)性回歸直線(xiàn)來(lái)刻畫(huà)中學(xué)生身高與體重的相關(guān)關(guān)系,請(qǐng)說(shuō)明理由;若能,求出該回歸直線(xiàn)方程;

          3)說(shuō)明殘差平方和或相關(guān)指數(shù)與線(xiàn)性回歸模型擬合效果之間關(guān)系.(只需寫(xiě)出結(jié)論,不需要計(jì)算)

          參考公式:,.

          參考數(shù)據(jù):(1;(2;(3,,;(4.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為,右準(zhǔn)線(xiàn)為.點(diǎn)是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),連接并延長(zhǎng)交橢圓于點(diǎn),線(xiàn)段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且直線(xiàn)與右準(zhǔn)線(xiàn)交于點(diǎn).

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)若,求點(diǎn)的坐標(biāo);

          3)試確定直線(xiàn)與橢圓的公共點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,將的圖像向右平移個(gè)單位后,再保持縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到函數(shù)的圖象.

          1)求函數(shù)上的值域及單調(diào)遞增區(qū)間;

          2)若,且,,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓,四點(diǎn),,中恰有三點(diǎn)在橢圓上,拋物線(xiàn)焦點(diǎn)到準(zhǔn)線(xiàn)的距離為.

          1)求橢圓、拋物線(xiàn)的方程;

          2)過(guò)橢圓右頂點(diǎn)Q的直線(xiàn)與拋物線(xiàn)交于點(diǎn)A、B,射線(xiàn)、分別交橢圓于點(diǎn)、.

          i)證明:為定值;

          ii)求的面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊,那么下面說(shuō)法正確的是_________

          (1) 平面平面 (2)四面體的體積是

          (3)二面角的正切值是 (4)與平面所成角的正弦值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,平面平面,底面是等腰梯形,,,點(diǎn)E在線(xiàn)段上,且.

          1)證明:平面;

          2)求二面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案