日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)n為正整數(shù),規(guī)定:,已知
          (1)解不等式:f(x)≤x;
          (2)設(shè)集合A={0,1,2},對(duì)任意x∈A,證明:f3(x)=x;
          (3)探求
          (4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個(gè)元素.
          【答案】分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195603904/SYS201310241828351956039020_DA/0.png">是分段函數(shù),所以先根據(jù)定義域選擇解析式來(lái)構(gòu)造不等式,當(dāng)0≤x≤1時(shí),由2(1-x)≤x求解;當(dāng)1<x≤2時(shí),由x-1≤x求解,取后兩個(gè)結(jié)果取并集.
          (2)先求得f(0),f(1),f(2),再分別求得f(f(0)),f(f(f(0)));f(f(1)),f(f(f(1)));f(f(f(2))).再觀(guān)察與自變量是否相等即可.
          (3)看問(wèn)題有2008重求值,一定用到周期性,所以先求出 ,,,觀(guān)察是以4為周期,有 (k,r∈N)求解
          (4)由(1)可得∈B、由(2)可得0、1、2∈B、由(3)可得、、∈B,進(jìn)而可證得結(jié)論.
          解答:解:(1)①當(dāng)0≤x≤1時(shí),由2(1-x)≤x得,x≥
          ≤x≤1.
          ②當(dāng)1<x≤2時(shí),因x-1≤x恒成立.
          ∴1<x≤2.
          由①,②得,f(x)≤x的解集為{x|≤x≤2}.
          (2)∵f(0)=2,f(1)=0,f(2)=1,
          ∴當(dāng)x=0時(shí),f3(0)=f(f(f(0)))=f(-f(2))=f(1)=0;
          當(dāng)x=1時(shí),f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;
          當(dāng)x=2時(shí),f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.
          即對(duì)任意x∈A,恒有f3(x)=x.
          (3),
          ,
          ,

          一般地,(k,r∈N).

          (4)由(1)知,f()=,∴fn)=,則f12)=,∴∈B.
          由(2)知,對(duì)x=0、1、2,恒有f3(x)=x,∴f12(x)=x,則0、1、2∈B.
          由(3)知,對(duì)x=、、,恒有f12(x)=x,∴、、∈B.
          綜上所述、0、1、2、、∈B.
          ∴B中至少含有8個(gè)元素.
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是分段函數(shù)及分段不等式的解法,元素與集合關(guān)系的判定,函數(shù)的周期性,函數(shù)恒成立問(wèn)題,分段函數(shù)問(wèn)題要注意分類(lèi)討論,還考查了分段函數(shù)多重求值,要注意從內(nèi)到外,根據(jù)自變量取值選擇好解析式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)n為正整數(shù),規(guī)定:fn(x)=
          f{f[…f(x)…]}
          n個(gè)f
          ,已知f(x)=
          2(1-x)(0≤x≤1)
          x-1(1<x≤2)

          (1)解不等式:f(x)≤x;
          (2)設(shè)集合A={0,1,2},對(duì)任意x∈A,證明:f3(x)=x;
          (3)求f2008(
          8
          9
          )
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2007•惠州模擬)設(shè)n為正整數(shù),規(guī)定:fn(x)=
          f{f[…f(x)]}
          n個(gè)f
          ,已知f(x)=
          2(1-x),0≤x≤1
          x-1,1<x≤2
          ,
          (1)解不等式f(x)≤x;
          (2)設(shè)集合A={0,1,2},對(duì)任意x∈A,證明:f3(x)=x;
          (3)求f2007(
          8
          9
          )
          的值;
          (4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個(gè)元素.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)n為正整數(shù),規(guī)定:fn(x)=
          f{f[…f(x)…]}
          n個(gè)f
          ,已知f(x)=
          2(1-x)
          x-1
          ,
          (0≤x≤1)
          (1<x≤2)

          (1)解不等式:f(x)≤x;
          (2)設(shè)集合A={0,1,2},對(duì)任意x∈A,證明:f3(x)=x;
          (3)探求f2009(
          8
          9
          )
          ;
          (4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個(gè)元素.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿(mǎn)分12分)

            設(shè)n為正整數(shù),規(guī)定:fn(x)=,已知f(x)= .

          (1)解不等式f(x)≤x

          (2)設(shè)集合A={0,1,2},對(duì)任意xA,證明f3(x)=x;

          (3)求f2007()的值;

          (4)(理)若集合B=,證明B中至少包含8個(gè)元素.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案