日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù),其中為自然對數(shù)的底數(shù).

          1)若在定義域上是增函數(shù),求的取值范圍;

          2)若直線是函數(shù)的切線,求實數(shù)的值;

          3)當(dāng)時,證明:.

          【答案】1;(2;(3)證明見解析

          【解析】

          1)首先求出函數(shù)的定義域與導(dǎo)函數(shù),由上是增函數(shù)

          上恒成立;即上恒成立

          設(shè),利用導(dǎo)數(shù)說明其單調(diào)性,即可求出參數(shù)的取值范圍;

          (2)設(shè)切點為,則,再由切線的斜率為零得到,所以,構(gòu)造函數(shù),利用導(dǎo)數(shù)說明其單調(diào)性,即可求出參數(shù)的值;

          3)由,設(shè),利用導(dǎo)數(shù)說明的單調(diào)性,即可得到,最后利用基本不等式即可得證;

          解:(1)函數(shù)的定義域為,,

          上是增函數(shù)

          上恒成立;即上恒成立

          設(shè),則

          上為增函數(shù);即

          .

          2)設(shè)切點為,則,

          因為,所以,得,

          所以.

          設(shè),則,

          所以當(dāng)時,,單調(diào)遞增,

          當(dāng)時,,單調(diào)遞減,

          所以.

          因為方程僅有一解,

          所以.

          3)因為,

          設(shè),則,所以單調(diào)遞增.

          因為,,

          所以存在,使得.

          當(dāng)時,,,單調(diào)遞減,

          當(dāng)時,,單調(diào)遞增,

          所以.

          因為,所以,

          所以.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線的參數(shù)方程為為參數(shù)),,曲線的極坐標(biāo)方程為.

          1)求直線的普通方程及曲線的直角坐標(biāo)方程;

          2)若直線與曲線交于、兩點,設(shè)、中點為,求弦長以及.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),求:

          (1)函數(shù)的圖象在點(0,-2)處的切線方程;

          (2)的單調(diào)遞減區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

          微信控

          非微信控

          合計

          男性

          26

          24

          50

          女性

          30

          20

          50

          合計

          56

          44

          100

          (1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?

          (2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,再隨機(jī)抽取3人贈送禮品,記這3人中“微信控”的人數(shù)為,試求的分布列和數(shù)學(xué)期望.

          參考公式: ,其中.

          參考數(shù)據(jù):

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著手機(jī)的發(fā)展,微信逐漸成為人們支付購物的一種形式.某機(jī)構(gòu)對使用微信支付的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對使用微信支付贊成人數(shù)如下表.

          年齡(單位:歲)

          ,

          ,

          頻數(shù)

          5

          10

          15

          10

          5

          5

          贊成人數(shù)

          5

          10

          12

          7

          2

          1

          1)若以年齡45歲為分界點,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為使用微信支付的態(tài)度與人的年齡有關(guān);

          年齡不低于45歲的人數(shù)

          年齡低于45歲的人數(shù)

          合計

          贊成

          不贊成

          合計

          2)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽樣人數(shù)分別3人與2人,現(xiàn)對抽樣的5人進(jìn)行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          ,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,點在平面內(nèi)運(yùn)動,使得二面角的平面角與二面角的平面角互余,則點的軌跡是( )

          A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高二年級抽取了名男生和名女生的該學(xué)科成績,得到如圖所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定分以上為優(yōu)分(含分).

          (1)(i)請根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;

          優(yōu)分

          非優(yōu)分

          總計

          男生

          女生

          總計

          50

          ii)據(jù)列聯(lián)表判斷,能否在犯錯誤概率不超過的前提下認(rèn)為學(xué)科成績與性別有關(guān)?

          (2)將頻率視作概率,從高二年級該學(xué)科成績中任意抽取名學(xué)生的成績,求成績?yōu)閮?yōu)分人數(shù)的分布列與數(shù)學(xué)期望.

          參考公式:

          參考數(shù)據(jù):

          0.100

          0.050

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年高考數(shù)學(xué)的全國Ⅲ卷中,文科和理科的選做題題目完全相同,第22題考查選修4-4:極坐標(biāo)和參數(shù)方程;第23題考查選修4-5:不等式選講.某校高三質(zhì)量檢測的命題采用了全國Ⅲ卷的形式,在測試結(jié)束后,該校數(shù)學(xué)組教師對該校全體高三學(xué)生的選做題得分情況進(jìn)行了統(tǒng)計,得到兩題得分的列聯(lián)表如下(已知每名學(xué)生只做了一道題):

          選做22

          選做23

          合計

          文科人數(shù)

          50

          60

          理科人數(shù)

          40

          總計

          400

          1)完善列聯(lián)表中的數(shù)據(jù),判斷能否有的把握認(rèn)為“選做題的選擇”與“文、理科的科類”有關(guān);

          2)經(jīng)統(tǒng)計,第23題得分為0的學(xué)生中,理科生占理科總?cè)藬?shù)的,文科生占文科總?cè)藬?shù)的,在按分層抽樣的方法在第23題得分為0的學(xué)生中隨機(jī)抽取6名進(jìn)行單獨輔導(dǎo),并在輔導(dǎo)后隨機(jī)抽取2名學(xué)生進(jìn)行測試,求被抽中進(jìn)行測試的2名學(xué)生均為理科生的概率.

          附:,其中.

          0.050

          0.010

          0.001

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)。

          (1)求的單調(diào)區(qū)間;

          (2)討論零點的個數(shù);

          (3)當(dāng)時,設(shè)恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案