日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 修建一個面積為平方米的矩形場地的圍墻,要求在前面墻的正中間留一個寬度為2米的出入口,后面墻長度不超過20米,已知后面墻的造價為每米45元,其它墻的造價為每米180元,設(shè)后面墻長度為x米,修建此矩形場地圍墻的總費(fèi)用為元.
          (1)求的表達(dá)式;
          (2)試確定x,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

          (1);(2)若,最小總費(fèi)用為(元).,則當(dāng)時,最小總費(fèi)用為(元).  .

          解析試題分析:(1)根據(jù)條件可以將所有墻的長度都用含的代數(shù)式表示出來,再由墻的造價,即可得到,又由條件后墻長度不超過20米及前墻留一個寬度為2米的出入口,可知;(2)由(1)中所求表達(dá)式可知,要求最小費(fèi)用,即求,而是一個“對鉤”函數(shù),需對的取值范圍分類討論:①,②,從而利用“對鉤”函數(shù)的單調(diào)性求的最小值.
          (1)畫出如下示意圖,由矩形的面積為S,可知與相鄰的邊長為,∴總費(fèi)用
          顯然,∴

          (2),則,可以證明遞減,在遞增.
          ,即,則當(dāng)時,最小總費(fèi)用為(元).
          ,即,則當(dāng)時,
          最小總費(fèi)用為(元). 
          考點(diǎn):1.函數(shù)的運(yùn)用;2.函數(shù)單調(diào)性求極值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)為實(shí)數(shù),),,⑴若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/4/cnqz62.png" style="vertical-align:middle;" />,求的表達(dá)式;
          ⑵設(shè),且函數(shù)為偶函數(shù),判斷是否大0?
          ⑶設(shè),當(dāng)時,證明:對任意實(shí)數(shù),(其中的導(dǎo)函數(shù)) .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (1)已知函數(shù),過點(diǎn)P的直線與曲線相切,求的方程;
          (2)設(shè),當(dāng)時,在1,4上的最小值為,求在該區(qū)間上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知處都取得極值.
          (1)求,的值;
          (2)設(shè)函數(shù),若對任意的,總存在,使得:,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知為常數(shù),且,函數(shù), 
          是自然對數(shù)的底數(shù)).
          (1)求實(shí)數(shù)的值;
          (2)求函數(shù)的單調(diào)區(qū)間;
          (3)當(dāng)時,是否同時存在實(shí)數(shù)),使得對每一個,直線與曲線都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)和最大的實(shí)數(shù);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (1)求的單調(diào)區(qū)間和極值;
          (2)若關(guān)于的方程有3個不同實(shí)根,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,求上的最小值;
          (2)若存在,使,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          證明:(1)存在唯一,使;
          (2)存在唯一,使,且對(1)中的.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
          (1)若曲線y=f(x)與曲線y=g(x) 在它們的交點(diǎn)P(2,c)處有相同的切線(P為切點(diǎn)),求實(shí)數(shù)a,b的值;
          (2)令h (x)=f(x)+g(x),若函數(shù)h(x)的單調(diào)減區(qū)間為.
          ①求函數(shù)h(x)在區(qū)間(-∞,-1]上的最大值M(a);
          ②若|h(x)|≤3在x∈[-2,0]上恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案