日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知定點O(0,0),A(3,0),動點P到定點O距離與到定點A的距離的比值是
          (Ⅰ)求動點P的軌跡方程,并說明方程表示的曲線;
          (Ⅱ)當(dāng)λ=4時,記動點P的軌跡為曲線D.F,G是曲線D上不同的兩點,對于定點Q(﹣3,0),有|QF||QG|=4.試問無論F,G兩點的位置怎樣,直線FG能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.

          【答案】解:(Ⅰ)設(shè)動點P的坐標為(x,y),
          則由|PO|=|PA|得λ(x2+y2)=(x﹣3)2+y2 ,
          整理得:(λ﹣1)x2+(λ﹣1)y2+6x﹣9=0,
          ∵λ>0,∴當(dāng)λ=1時,方程可化為:2x﹣3=0,方程表示的曲線是線段OA的垂直平分線;
          當(dāng)λ≠1時,則方程可化為,+y2=,
          即方程表示的曲線是以(﹣,0)為圓心,為半徑的圓.
          (Ⅱ)當(dāng)λ=4時,曲線D的方程是x2+y2+2x﹣3=0,
          故曲線D表示圓,圓心是D(﹣1,0),半徑是2.
          設(shè)點Q到直線FG的距離為d,∠FQG=θ,
          則由面積相等得到|QF||QG|sinθ=d|FG|,且圓的半徑r=2.
          即d===1.于是頂點Q到動直線FG的距離為定值,
          即動直線FG與定圓(x+3)2+y2=1相切.
          【解析】(Ⅰ)設(shè)動點P的坐標為(x,y),由|PO|=|PA|代入坐標整理得(λ﹣1)x2+(λ﹣1)y2+6x﹣9=0,對λ分類討論可得;
          (Ⅱ)當(dāng)λ=4時,曲線D的方程是x2+y2+2x﹣3=0,則由面積相等得到|QF||QG|sinθ=d|FG|,且圓的半徑r=2,由點到直線的距離公式以及直線和圓的位置關(guān)系可得.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和 (n為正整數(shù)).
          (1)求數(shù)列{an}的通項公式;
          (2)令 ,Tn=c1+c2+…+cn , 求Tn的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設(shè)多個分支機構(gòu),需要國內(nèi)公司外派大量后、后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從后和后的員工中隨機調(diào)查了位,得到數(shù)據(jù)如下表:

          愿意被外派

          不愿意被外派

          合計

          合計

          (Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有以上的把握認為“是否愿意被外派與年齡有關(guān)”,并說明理由;

          (Ⅱ)該公司舉行參觀駐海外分支機構(gòu)的交流體驗活動,擬安排名參與調(diào)查的后、后員工參加.后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數(shù)為;后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數(shù)為,求的概率

          參考數(shù)據(jù):

          (參考公式:,其中).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=-x2+2x-3.

          (1)求f(x)在區(qū)間[2a-1,2]上的最小值g(a);

          (2)求g(a)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)的定義域D,如果存在正實數(shù)m,使得對任意x∈D,都有f(x+m)>f(x),則稱f(x)為D上的“m型增函數(shù)”.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=|x﹣a|﹣a(a∈R).若f(x)為R上的“20型增函數(shù)”,則實數(shù)a的取值范圍是( 。
          A.a>0
          B.a<5
          C.a<10
          D.a<20

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b
          (1)若時,求f(sinθ)的最大值;
          (2)設(shè)a>0時,若對任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值為2,求f(x)的表達式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=bax , (其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點A(1,8),B(3,32)
          (1)求f(x)的解析式;
          (2)若不等式+1﹣2m≥0在x∈(﹣∞,1]上恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,AB為⊙O的直徑,直線CD與⊙O相切于EAD垂直CDD,BC垂直CDC,EF垂直ABF,連接AE,BE.

          證明:(1)∠FEB=∠CEB;

          (2)EF2AD·BC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面是正方形,側(cè)棱⊥底面的中點.

          (Ⅰ)求證: ;

          (Ⅱ)證明:

          查看答案和解析>>

          同步練習(xí)冊答案