日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知四棱錐S-A BCD是由直角梯形沿著CD折疊而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小為120°.
          (Ⅰ)求證:平面ASD⊥平面ABCD;
          (Ⅱ)設(shè)側(cè)棱SC和底面ABCD所成角為θ,求θ的正弦值.

          解:(Ⅰ)∵SD=DA=AB=BC=l,AS∥BC,AB⊥AD,
          ∴CD⊥SD,CD⊥AD.
          可得二面角S-CD-A的平面角為∠ADS,∠ADS=120°.
          又∵AD∩SD,
          ∴CD⊥平面ADS.
          又∵CD?平面ABCD,
          ∴平面ASD⊥平面ABCD.…(6分)
          (Ⅱ)過(guò)點(diǎn)S作SH⊥AD,交AD的延長(zhǎng)線于H點(diǎn).
          ∵平面ASD⊥平面ABCD,平面ASD∩平面ABCD=AD,
          ∴SH⊥平面ABC.可得CH為側(cè)棱SC在底面ABCD內(nèi)的射影.
          因此,∠SCH為側(cè)棱SC和底面ABC所成的角θ.…(10分)
          在Rt△SHD中,∠SDH=180°-∠ADS=60°,SD=1,可得SH=SDsin60°=
          在Rt△SDC中,∠SDC=90°,SD=AB=DC=1,可得SC=
          在Rt△SHC中,sinθ===
          ∴側(cè)棱SC和底面ABCD所成角θ的正弦值的.…(13分)
          分析:(1)根據(jù)題意,得到CD⊥SD,CD⊥AD.結(jié)合線面垂直的判定定理,得到CD⊥平面ADS,再由CD?平面ABCD,即可證出平面ASD⊥平面ABCD.
          (2)由(1)得二面角S-CD-A的平面角為∠ADS,即∠ADS=120°.過(guò)點(diǎn)S作SH⊥AD,交AD的延長(zhǎng)線于H點(diǎn).可得SH⊥平面ABC.可得CH為側(cè)棱SC在底面ABCD內(nèi)的射影,因此∠SCH為側(cè)棱SC和底面ABC所成的角θ.然后分別在在Rt△SHD、Rt△SDC和Rt△SHC中利用三角函數(shù)知識(shí),結(jié)合題中數(shù)據(jù)算出sinθ=,即得側(cè)棱SC和底面ABCD所成角θ的正弦值.
          點(diǎn)評(píng):本題給出平面翻折問(wèn)題,求證面面垂直并求直線與平面所成角的正弦值,著重考查了線面垂直、面面垂直的判定與性質(zhì)和直線與平面所成角的定義及求法等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知四棱錐S-ABCD的底面ABCD是邊長(zhǎng)為1的正方形,SA⊥平面ABCD,SA=2,E是側(cè)棱SC上的一點(diǎn).
          (1)求證:平面EBD⊥平面SAC;
          (2)求四棱錐S-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知四棱錐S-ABCD的底面是邊長(zhǎng)為4的正方形,S在底面上的射影O落在正方形ABCD內(nèi),SO的長(zhǎng)為3,O到AB,AD的距離分別為2和1,P是SC的中點(diǎn).
          (Ⅰ)求證:平面SOB⊥底面ABCD;
          (Ⅱ)設(shè)Q是棱SA上的一點(diǎn),若
          AQ
          =
          3
          4
          AS
          ,求平面BPQ與底面ABCD所成的銳二面角余弦值的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知四棱錐S-A BCD是由直角梯形沿著CD折疊而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小為120°.
          (Ⅰ)求證:平面ASD⊥平面ABCD;
          (Ⅱ)設(shè)側(cè)棱SC和底面ABCD所成角為θ,求θ的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2008•湖北模擬)如圖,已知四棱錐S-ABCD中,△SAD是邊長(zhǎng)為a的正三角形,平面SAD⊥平面ABCD,四邊形ABCD為菱形,∠DAB=60°,P為AD的中點(diǎn),Q為SB的中點(diǎn).
          (Ⅰ)求證:PQ∥平面SCD;
          (Ⅱ)求二面角B-PC-Q的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•江西模擬)(如圖)已知四棱錐S-ABCD的底面ABCD是菱形,將面SAB,SAD,ABCD 展開(kāi)成平面后的圖形恰好為一正三角形S'SC.
          (1)求證:在四棱錐S-ABCD中AB⊥SD.
          (2)若AC長(zhǎng)等于6,求異面直線AB與SC之間的距離.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案