日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C: (a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
          (1)求橢圓C的方程;
          (2)設(shè)P的橢圓C上一點,直線PA與Y軸交于點M,直線PB與x軸交于點N。求證:lANl lBMl為定值。

          【答案】
          (1)

          解:由已知, ,又 ,

          解得

          ∴橢圓的方程為


          (2)

          解:方法一:

          設(shè)橢圓上一點 ,則 .

          直線 ,令 ,得 .

          直線 ,令 ,得 .

          代入上式得

          為定值.

          方法二:

          設(shè)橢圓 上一點 ,

          直線PA: ,令 ,得 .

          直線 : ,令 ,得 .

          為定值


          【解析】(1)運用橢圓的離心率公式和三角形的面積公式,結(jié)合a,b,c的關(guān)系,解方程可得a=2,b=1,進而得到橢圓方程;(2)方法一、設(shè)橢圓上點P(x0 , y0),可得x02+4y02=4,求出直線PA的方程,令x=0,求得y,|BM|;求出直線PB的方程,令y=0,可得x,|AN|,化簡整理,即可得到|AN||BM|為定值4.方法二、設(shè)P(2cosθ,sinθ),(0≤θ<2π),求出直線PA的方程,令x=0,求得y,|BM|;求出直線PB的方程,令y=0,可得x,|AN|,運用同角的平方關(guān)系,化簡整理,即可得到|AN||BM|為定值4.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為曲線上的動點,點在線段上,且滿足

          1)求點的軌跡的直角坐標(biāo)方程;

          2)直線的參數(shù)方程是為參數(shù)),其中 交于點,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)定義在上的函數(shù), ),給出以下四個論斷:

          的周期為;②在區(qū)間上是增函數(shù);③的圖象關(guān)于點對稱;④的圖象關(guān)于直線對稱.以其中兩個論斷作為條件,另兩個論斷作為結(jié)論,寫出你認(rèn)為正確的一個命題(寫成“”的形式)__________.(其中用到的論斷都用序號表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】假設(shè)關(guān)于某設(shè)備的使用年限和所支出的維修費用 (萬元),有如下的統(tǒng)計數(shù)據(jù)由資料知呈線性相關(guān),并且統(tǒng)計的五組數(shù)據(jù)得平均值分別為,,若用五組數(shù)據(jù)得到的線性回歸方程去估計,使用8年的維修費用比使用7年的維修費用多1.1萬元,

          (1)求回歸直線方程;

          (2)估計使用年限為10年時,維修費用是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
          (1)求證:PD 平面PAB;
          (2)求直線PB與平面PCD所成角的正弦值;
          (3)在棱PA上是否存在點M,使得BMll平面PCD?若存在,求 的值;若不存在,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是正方形,側(cè)棱底面,的中點,求證:

          (1)平面 ;

          (2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知{an}為等差數(shù)列,a3=6,a6=0.

          (1){an}的通項公式;

          (2)若等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3,{bn}的前n項和公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知{an}是等比數(shù)列,前n項和為Sn(n∈N*),且 = ,S6=63.
          (1)求{an}的通項公式;
          (2)若對任意的n∈N* , bn是log2an和log2an+1的等差中項,求數(shù)列{(﹣1)n bn2}的前2n項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圓,則圓心坐標(biāo)是 , 半徑是

          查看答案和解析>>

          同步練習(xí)冊答案