日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=2g(x+
          1
          2
          )+mx-3m2lnx+
          9
          4
          (m>0,x>0)

          (1)求g(x)的表達式;
          (2)若函數(shù)f(x)在x∈[1,+∞)上的最小值為0,求m的值;
          (3)記函數(shù)H(x)=[x(x-a)2-1]•[-x2+(a-1)x+a-1],若函數(shù)y=H(x)有5個不同的零點,求實數(shù)a的取值范圍.
          分析:(1)設(shè)g(x)=ax2+bx+c,根據(jù)g(x-1)+g(1-x)=2(x-1)2-2,可求a,c的值,利用g(1)=-1,可求b的值,從而得到g(x)的表達式;
          (2)求導函數(shù),令f'(x)=0,得x=m,對參數(shù)m分類討論,確定函數(shù)的單調(diào)性,從而可得函數(shù)的最小值,利用f(x)在x∈[1,+∞)上的最小值為0,可求m的值;
          (3)記h1(x)=x(x-a)2,h2(x)=-x2+(a-1)x+a,則據(jù)題意有h1(x)-1=0有3個不同的實根,h2(x)-1=0有2個不同的實根,且這5個實根兩兩不相等,進而分類討論,即可確定實數(shù)a的取值范圍.
          解答:解:(1)設(shè)g(x)=ax2+bx+c,于是g(x-1)+g(1-x)=2a(x-1)2+2c=2(x-1)2-2,所以
          a=
          1
          2
          c=-1

          又g(1)=-1,則b=-
          1
          2
          .所以g(x)=
          1
          2
          x2-
          1
          2
          x-1

          (2)f(x)=2g(x+
          1
          2
          )+mx-3m2lnx+
          9
          4
          =x2+mx-3m2lnx

          f′(x)=2x+m-
          3m2
          x
          =
          2x2+mx-3m2
          x
          =
          (2x+3m)(x-m)
          x

          令f'(x)=0,得x=-
          3m
          2
          (舍),x=m.
          ①當m>1時,
          x 1 (1,m) m (m,+∞)
          f'(x) - 0 +
          f(x) 1+m 2m2-3m2lnm
          ∴當x=m時,fmin(x)=2m2-3m2lnm
          令2m2-3m2lnm=0,得m=e
          2
          3

          ②當0<m≤1時,f'(x)≥0在x∈[1,+∞)上恒成立,f(x)在x∈[1,+∞)上為增函數(shù),
          當x=1時,fmin(x)=1+m,令m+1=0,得m=-1(舍).
          綜上所述,所求m為m=e
          2
          3

          (3)記h1(x)=x(x-a)2,h2(x)=-x2+(a-1)x+a,則據(jù)題意有h1(x)-1=0有3個不同的實根,h2(x)-1=0有2個不同的實根,且這5個實根兩兩不相等.
          (。﹉2(x)-1=0有2個不同的實根,只需滿足g(
          a-1
          2
          )>1
          ,∴a>1或a<-3;
          (ⅱ)h1(x)-1=0有3個不同的實根,因h1(x)=3x2-4ax+a2=(3x-a)(x-a)
          h1(x)=0,得x=a或
          a
          3

          1°當
          a
          3
          >a
          即a<0時,h1(x)在x=a處取得極大值,而h1(a)=0,不符合題意,舍;
          2°當
          a
          3
          =a
          即a=0時,不符合題意,舍;
          3°當
          a
          3
          <a
          即a>0時,h1(x)在x=
          a
          3
          處取得極大值,h1(
          a
          3
          )>1⇒a>
          3
          32
          2
          ,所以a>
          3
          32
          2

          因為(。áⅲ┮瑫r滿足,故a>
          3
          32
          2

          下證:這5個實根兩兩不相等,即證:不存在x0使得h1(x0)-1=0和h2(x0)-1=0同時成立;
          若存在x0使得h1(x0)=h2(x0)=1,
          由h1(x0)=h2(x0),即x0(x0-a)2=-
          x
          2
          0
          +(a-1)x0+a

          (x0-a)(
          x
          2
          0
          -ax0+x0+1)=0
          ,
          當x0=a時,f(x0)=g(x0)=0,不符合,舍去;
          當x0≠a時,有
          x
          2
          0
          -ax0+x0+1=0
          ①;
          又由g(x0)=1,即-
          x
          2
          0
          +(a-1)x0+a=1
          ②;
          聯(lián)立①②式,可得a=0;
          而當a=0時,H(x)=(x3-1)(-x2-x-1)=0沒有5個不同的零點,故舍去,所以這5個實根兩兩不相等.
          綜上,當a>
          3
          32
          2
          時,函數(shù)y=H(x)有5個不同的零點.
          點評:本題考查函數(shù)的解析式,考查導數(shù)知識的運用,考查分類討論的數(shù)學思想,考查函數(shù)的零點,綜合性強,難度大.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.
          (1)求g(x)的表達式;
          (2)設(shè)1<m≤e,H(x)=g(x+
          1
          2
          )+mlnx-(m+1)x+
          9
          8
          ,求證:H(x)在[1,m]上為減函數(shù);
          (3)在(2)的條件下,證明:對任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=g(x+
          1
          2
          )+mlnx+
          9
          8
          (m∈R,x>0)

          (1)求g(x)的表達式;
          (2)若?x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
          (3)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)g(x)的圖象經(jīng)過坐標原點,且滿足g(x+1)=g(x)+2x+1,設(shè)函數(shù)f(x)=mg(x)-ln(x+1),其中m為非零常數(shù)
          (1)求函數(shù)g(x)的解析式;
          (2)當-2<m<0時,判斷函數(shù)f(x)的單調(diào)性并且說明理由;
          (3)證明:對任意的正整數(shù)n,不等式ln(
          1
          n
          +1)>
          1
          n2
          -
          1
          n3
          恒成立.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)g(x)對任意實數(shù)x不等式x-1≤g(x)≤x2-x恒成立,且g(-1)=0,令f(x)=g(x)+mlnx+
          12
          (m∈R)

          (I)求g(x)的表達式;
          (Ⅱ)若?x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
          (Ⅲ)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)g(x)的圖象經(jīng)過坐標原點,且滿足g(x+1)=g(x)+2x+1,設(shè)函數(shù)f(x)=m[g(x+1)-1]-lnx,其中m為常數(shù)且m≠0.
          (1)求函數(shù)g(x)的解析式;
          (2)當-2<m<0時,判斷函數(shù)f(x)的單調(diào)性并且說明理由.

          查看答案和解析>>

          同步練習冊答案