日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若實(shí)數(shù)x,y滿足不等式組
          x+2y-2≤0
          x-3y-3≤0
          x-y+m≥0
          ,且x+y的最小值為-1,則實(shí)數(shù)m的值是( 。
          分析:根據(jù)不等式組作出可行域的大致區(qū)域,然后根據(jù)目標(biāo)函數(shù)z=x+y取最小值找出最優(yōu)解,把最優(yōu)解點(diǎn)的坐標(biāo)帶入目標(biāo)函數(shù)即可求得m的值.
          解答:解:令z=x+y,x+y的最小值為-1,指的是函數(shù)y=-x+z在y軸上截距的最小值是-1,
          分析不等式組表示的平面區(qū)域如圖,由圖可知,只有目標(biāo)函數(shù)對(duì)應(yīng)的直線經(jīng)過(guò)直線x-3y-3=0與x-y+m=0的交點(diǎn)時(shí),
          z=x+y取最小值,聯(lián)立兩直線方程解得交點(diǎn)P(-
          3
          2
          m-
          3
          2
          ,-
          1
          2
          m-
          3
          2
          ),所以-1=-
          3
          2
          m-
          3
          2
          -
          1
          2
          m-
          3
          2
          ,解得:m=-1.
          故選B.
          點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了學(xué)生的作圖能力,找二元一次不等式表示的平面區(qū)域可采用取特殊點(diǎn)的辦法,解答此題的關(guān)鍵是找到最優(yōu)解,是中低檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足
          f(x1)-f(x2)
          x1-x2
          <0
          ,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),
          y
          x
          的取值范圍為
          [-
          1
          2
          ,1]
          [-
          1
          2
          ,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案