在平面直角坐標(biāo)系中,已知定點(diǎn)A(-2,0)、B(2,0),異于A、B兩點(diǎn)的動(dòng)點(diǎn)P滿足,其中k1、k2分別表示直線AP、BP的斜率.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點(diǎn)B的任意一點(diǎn),直線AN與(I)中軌跡E交予點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),點(diǎn)C(1,0),求證:|CM|·|CN| 為定值.
(Ⅰ);(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)根據(jù)斜率公式,有斜率乘積等于整理即得,注意
;(Ⅱ)設(shè)直線
的方程,與橢圓方程組成方程組,消去
,由韋達(dá)定理求點(diǎn)
的坐標(biāo),根據(jù)直線
與以
為直徑的圓的另一個(gè)交點(diǎn)為
,得
,從而得到直線
的方程,確定恒過的定點(diǎn).證明
三點(diǎn)共線,又
是以
為直徑的圓的切線,由切割線定理可知,
,即為定值.
試題解析:(Ⅰ)設(shè),由
得
,其中
,
整理得點(diǎn)的軌跡方程為
. (4分)
(Ⅱ)設(shè)點(diǎn),則直線
的方程為
,
解方程組,消去
得
,
設(shè),則
,
,
從而,又
,
直線
與以
為直徑的圓的另一個(gè)交點(diǎn)為
,
,
方程為
,即
,過定點(diǎn)
, (9分)
定值證法一:即三點(diǎn)共線,又
是以
為直徑的圓的切線,由切割線定理可知,
,為定值. (12分)
定值證法二:直線:
,直線
:
,
聯(lián)立得,,
,為定值. (12分)
考點(diǎn):橢圓方程,直線與橢圓的關(guān)系,定點(diǎn)、定值問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)把的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求與
交點(diǎn)的極坐標(biāo)(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn)
,
,
為動(dòng)點(diǎn),且直線
與直線
的斜率之積為
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)設(shè)過點(diǎn)的直線
與曲線
相交于不同的兩點(diǎn)
,
.若點(diǎn)
在
軸上,且
,求點(diǎn)
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線
相切,直線
與橢圓C相交于A、B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的長軸長為4,且過點(diǎn)
.
(1)求橢圓的方程;
(2)設(shè)、
、
是橢圓上的三點(diǎn),若
,點(diǎn)
為線段
的中點(diǎn),
、
兩點(diǎn)的坐標(biāo)分別為
、
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知橢圓的左右焦點(diǎn)為F1,F(xiàn)2,離心率為
,以線段F1 F2為直徑的圓的面積為
, (1)求橢圓的方程;(2) 設(shè)直線l過橢圓的右焦點(diǎn)F2(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:
(a>b>0)的左、右焦點(diǎn),直線
:x=-
將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的對稱中心為坐標(biāo)原點(diǎn),上焦點(diǎn)為
,離心率
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為
軸上的動(dòng)點(diǎn),過點(diǎn)
作直線
與直線
垂直,試探究直線
與橢圓
的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓
:
的離心率
,且橢圓C上一點(diǎn)
到點(diǎn)Q
的距離最大值為4,過點(diǎn)
的直線交橢圓
于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)
時(shí),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com