日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于
          A(x1,y1)B(x2,y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
          (Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
          (Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足
          BM
          MA
          ,證明線段PM的中點(diǎn)在y軸上.
          (Ⅰ)由拋物線C的方程y=ax2(a<0)得,焦點(diǎn)坐標(biāo)為(0,
          1
          4a
          )
          ,準(zhǔn)線方程為y=-
          1
          4a

          (Ⅱ)證明:設(shè)直線PA的方程為y-y0=k1(x-x0),直線PB的方程為y-y0=k1(x-x0).
          點(diǎn)P(x0,y0)和點(diǎn)A(x1,y1)的坐標(biāo)是方程組
          y-y0=k1(x-x0)①
          y=ax2
          的解.
          將②式代入①式得ax2-k1x+k1x0-y0=0,于是x1+x0=
          k1
          a
          ,故x1=
          k1
          a
          -x0

          又點(diǎn)P(x0,y0)和點(diǎn)B(x2,y2)的坐標(biāo)是方程組
          y-y0=k2(x-x0)④
          y=ax2
          的解.
          將⑤式代入④式得ax2-k2x+k2x0-y0=0.于是x2+x0=
          k2
          a
          ,故x2=
          k2
          a
          -x0

          由已知得,k2=-λk1,則x2=-
          λ
          a
          k1-x0
          . 、
          設(shè)點(diǎn)M的坐標(biāo)為(xM,yM),由
          BM
          MA
          ,則xM=
          x2x1
          1+λ

          將③式和⑥式代入上式得xM=
          -x0x0
          1+λ
          =-x0
          ,即xM+x0=0.
          ∴線段PM的中點(diǎn)在y軸上.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
          (Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
          (Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足
          BM
          MA
          ,證明線段PM的中點(diǎn)在y軸上;
          (Ⅲ)當(dāng)λ=1時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于
          A(x1,y1)B(x2,y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
          (Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
          (Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足
          BM
          MA
          ,證明線段PM的中點(diǎn)在y軸上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率為k1、k2的兩條直線分別交拋物線C于A(x1,y1)、B(x2,y2)兩點(diǎn)(P、A、B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1),
          (1)設(shè)直線AB上一點(diǎn)M,滿足
          BM
          MA
          ,證明線段PM的中點(diǎn)在y軸上;
          (2)當(dāng)λ=1時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C的方程為y=x2,過(0,1)點(diǎn)的直線l與C相交于點(diǎn)A,B,證明:OA⊥OB(O為坐標(biāo)原點(diǎn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          過曲線上一點(diǎn)與以此點(diǎn)為切點(diǎn)的切線垂直的直線,叫做曲線在該點(diǎn)的法線.
          已知拋物線C的方程為y=ax2(a>0,x≠0).點(diǎn)M(x0,y0)是C上任意點(diǎn),過點(diǎn)M作C的切線l,法線m.
          (I)求法線m與拋物線C的另一個(gè)交點(diǎn)N的橫坐標(biāo)xN取值范圍;
          (II)設(shè)點(diǎn)F是拋物線的焦點(diǎn),連接FM,過點(diǎn)M作平行于y軸的直線n,設(shè)m與x軸的交點(diǎn)為S,n與x軸的交點(diǎn)為K,設(shè)l與x軸的交點(diǎn)為T,求證∠SMK=∠FMN

          查看答案和解析>>

          同步練習(xí)冊(cè)答案