日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•湖南模擬)已知(x2-
          1
          x
          n的展開式中第二項(xiàng)與第四項(xiàng)的系數(shù)相等,則展開式的二項(xiàng)式系數(shù)之和為
          16
          16
          分析:先根據(jù)二項(xiàng)式定理寫出通項(xiàng)公式,然后根據(jù)第二項(xiàng)與第四項(xiàng)的系數(shù)相等建立等式,求出n的值,從而求出展開式的二項(xiàng)式系數(shù)之和.
          解答:解:(x2-
          1
          x
          n的展開式的通項(xiàng)公式為Tr+1=
          C
          r
          n
          (x2n-r(-
          1
          x
          r=(-1)r
          C
          r
          n
          x 2n-
          5
          2
          r
          ∴第二項(xiàng)系數(shù)為-
          C
          1
          n
          ,第四項(xiàng)的系數(shù)為-
          C
          3
          n

          ∵第二項(xiàng)與第四項(xiàng)的系數(shù)相等
          ∴-
          C
          1
          n
          =-
          C
          3
          n
          解得n=4
          ∴(x2-
          1
          x
          n的展開式二項(xiàng)式系數(shù)之和為24=16
          故答案為:16
          點(diǎn)評(píng):本題主要考查了二項(xiàng)式系數(shù)的性質(zhì),以及系數(shù)的求解,解題的關(guān)鍵是根據(jù)二項(xiàng)式定理寫出通項(xiàng)公式,同時(shí)考查了計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)已知函數(shù)f(x)=
          1
          2
          x2+x-(x+1)ln(x+1)

          (1)判斷f(x)的單調(diào)性;
          (2)記φ(x)=f′(x-1)-k(x-1),若函數(shù)φ(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),求證:φ′(
          x1+x2
          2
          )>0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)已知向量
          m
          =(2cos2x,
          3
          ),
          n
          =(1,sin2x)
          ,函數(shù)f(x)=
          m
          n

          (1)求函數(shù)f(x)的對(duì)稱中心;
          (2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=3,c=1,ab=2
          3
          ,且a>b,求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)設(shè)函數(shù)y=f(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f′(x),f′(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f″(x),若在區(qū)間(a,b)上的f″(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,已知f(x)=
          1
          12
          x4-
          1
          6
          mx3-
          3
          2
          x2
          ,若當(dāng)實(shí)數(shù)m滿足|m|≤2時(shí),函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,則b-a的最大值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)已知函數(shù)f(x)=
          -x-1(x<-2)
          x+3(-2≤x≤
          1
          2
          )
          5x+1(x>
          1
          2
          )
          (x∈R),
          (Ⅰ)求函數(shù)f(x)的最小值;
          (Ⅱ)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意x∈R恒成立;命題q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)設(shè)曲線y=xn+1(n∈N)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則x1•x2•x3•…•x2012的值為
          1
          2013
          1
          2013

          查看答案和解析>>

          同步練習(xí)冊(cè)答案