日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)斜率為2的直線l,過雙曲線的右焦 點,且與雙曲線的左、右兩支分別相交,則雙曲線離心率,e的取值范圍是

          A. e B. e C. 1e D. 1e

          【答案】A

          【解析】設(shè)右焦點為,所以直線方程為,代入雙曲線得: ,因為直線與雙曲線左右分別相交,所以交點的橫坐標的乘積,由韋達定理可得: 可得,故選A.

          【方法點晴】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率取值范圍,屬于中檔題. 求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率范圍問題應(yīng)先將 用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的不等式,從而求出的范圍. 本題是利用韋達定理構(gòu)造出關(guān)于的不等式,最后解出的范圍.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓心在軸上的圓與直線切于點.

          (1)求圓的標準方程;

          2已知,圓軸相交于兩點(點在點的右側(cè)).過點任作一條傾斜角不為0的直線與圓相交于兩點問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)為實數(shù),函數(shù), .

          1)求的單調(diào)區(qū)間與極值;

          2)求證:當(dāng)時, .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2016年6月22日“國際教育信息化大會”在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會”,某機構(gòu)隨機抽取了年齡在15—75歲之間的100人進行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間自 內(nèi)的人分別稱為“青少年”和“中老年”.

          關(guān)注

          不關(guān)注

          合計

          青少年

          15

          中老年

          合計

          50

          50

          100

          (1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);

          (2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”;

          臨界值表:

          附:參考公式

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          ,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f( )=﹣ x3+ x2﹣m,g(x)=﹣ x3+mx2+(a+1)x+2xcosx﹣m.
          (1)若曲線y=f(x)僅在兩個不同的點A(x1 , f(x1)),B(x1 , f(x2))處的切線都經(jīng)過點(2,t),求證:t=3m﹣8,或t=﹣ m3+ m2﹣m.
          (2)當(dāng)x∈[0,1]時,若f(x)≥g(x)恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】用部分自然數(shù)構(gòu)造如圖的數(shù)表:用表示第行第個數(shù),使得,每行中的其他各數(shù)分別等于其“肩膀”上的兩個數(shù)之和,設(shè)第行中的各數(shù)之和為.

          已知,求的值;

          ,證明:是等比數(shù)列,并求出的通項公式;

          數(shù)列中是否存在不同的三項恰好成等差數(shù)列?若存在,求出的關(guān)系,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列函數(shù)既是奇函數(shù),又在[﹣1,1]上單調(diào)遞增是(
          A.f(x)=|sinx|
          B.f(x)=ln
          C.f(x)= (ex﹣ex
          D.f(x)=ln( ﹣x)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】內(nèi)有一點P(-1,2),AB為過點P且傾斜角為的弦.

          (1)當(dāng)時,求AB的長;

          (2)當(dāng)弦AB被點P平分時,寫出直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩人相約于下午1:00~2:00之間到某車站乘公共汽車外出,他們到達車站的時間是隨機的.設(shè)在下午1:00~2:00之間該車站有四班公共汽車開出,開車時間分別是1:15,1:30,1:45,2:00.求他們在下述情況下乘同一班車的概率:

          (1)約定見車就乘;

          (2)約定最多等一班車.

          查看答案和解析>>

          同步練習(xí)冊答案