【題目】某大型商場(chǎng)在2018年國(guó)慶舉辦了一次抽獎(jiǎng)活動(dòng)抽獎(jiǎng)箱里放有3個(gè)紅球,3個(gè)黑球和1個(gè)白球這些小球除顏色外大小形狀完全相同
,從中隨機(jī)一次性取3個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱活動(dòng)另附說(shuō)明如下:
凡購(gòu)物滿(mǎn)
含
元者,憑購(gòu)物打印憑條可獲得一次抽獎(jiǎng)機(jī)會(huì);
凡購(gòu)物滿(mǎn)
含
元者,憑購(gòu)物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會(huì);
若取得的3個(gè)小球只有1種顏色,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;
若取得的3個(gè)小球有3種顏色,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;
若取得的3個(gè)小球只有2種顏色,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.
抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購(gòu)物消費(fèi)數(shù)據(jù)單位:元
,繪制得到如圖所示的莖葉圖.
求這20位顧客中獲得抽獎(jiǎng)機(jī)會(huì)的顧客的購(gòu)物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)
結(jié)果精確到整數(shù)部分
;
記一次抽獎(jiǎng)獲得的紅包獎(jiǎng)金數(shù)
單位:元
為X,求X的分布列及數(shù)學(xué)期望,并計(jì)算這20位顧客在抽獎(jiǎng)中獲得紅包的總獎(jiǎng)金數(shù)的平均值
假定每位獲得抽獎(jiǎng)機(jī)會(huì)的顧客都會(huì)去抽獎(jiǎng)
.
【答案】(1)中位數(shù)為,平均數(shù)為
;(2)
.
【解析】
(1)計(jì)算這組數(shù)據(jù)的中位數(shù)和平均數(shù)即可;
(2)根據(jù)題意知X的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫(xiě)出分布列,計(jì)算數(shù)學(xué)期望值,再求抽獎(jiǎng)的平均值.
(1)獲得抽獎(jiǎng)機(jī)會(huì)的數(shù)據(jù)的中位數(shù)為,
平均數(shù)為
(2)的可能取值為
,
,
,
,
,
則的分布列為
故
.
這位顧客中,有
位顧客獲得一次抽獎(jiǎng)的機(jī)會(huì),有
位顧客獲得兩次抽獎(jiǎng)的機(jī)會(huì),故共有
次抽獎(jiǎng)機(jī)會(huì).
所以這位顧客在抽獎(jiǎng)中獲得紅包的總獎(jiǎng)金數(shù)的平均值為
元。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.
(1)若直線(xiàn)l過(guò)點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線(xiàn)l的方程;
(2)設(shè)P為平面上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線(xiàn)l1和l2,它們分別與圓C1和圓C2相交,且直線(xiàn)l1被圓C1截得的弦長(zhǎng)與直線(xiàn)l2被圓C2截得的弦長(zhǎng)相等,試求所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若函數(shù)
恰有一個(gè)零點(diǎn),求
的取值范圍;
(2)當(dāng)時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正弦型函數(shù)有如下性質(zhì):最大值為
,最小值為
;相鄰兩條對(duì)稱(chēng)軸間的距離為
.
(I)求函數(shù)解析式;
(II)當(dāng)時(shí),求函數(shù)
的值域.
(III)若方程在區(qū)間
上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)
的取值范
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH
(2)若AB=4,CD=6,求四邊形EFGH周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程
.
(Ⅰ)若是從
四個(gè)數(shù)中任取的一個(gè)數(shù),
是從
三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間
任取的一個(gè)數(shù),
是從區(qū)間
任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為和
(萬(wàn)元),它們與投入資金
(萬(wàn)元)的關(guān)系有如下公式:
,
,今將200萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬(wàn)元.
(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬(wàn)元),求總利潤(rùn)
(萬(wàn)元)關(guān)于
的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于正整數(shù)、
,定義
,其中
、
為非負(fù)整數(shù),
,且
.求最大的正整數(shù)
,使得存在正整數(shù)
,對(duì)于任意的正整數(shù)
,都有
.證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
,對(duì)任意
,有
成立.
(1)求的通項(xiàng)公式;
(2)設(shè),
,
是數(shù)列
的前
項(xiàng)和,求正整數(shù)
,使得對(duì)任意
,
恒成立;
(3)設(shè),
是數(shù)列
的前
項(xiàng)和,若對(duì)任意
均有
恒成立,求
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com