新晨投資公司擬投資開發(fā)某項新產(chǎn)品,市場評估能獲得萬元的投資收益.現(xiàn)公司準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金
(單位:萬元)隨投資收益
(單位:萬元)的增加而增加,且獎金不低于
萬元,同時不超過投資收益的
.
(1)設(shè)獎勵方案的函數(shù)模型為,試用數(shù)學(xué)語言表述公司對獎勵方案的函數(shù)模型
的基本要求.
(2)下面是公司預(yù)設(shè)的兩個獎勵方案的函數(shù)模型:
①; ②
試分別分析這兩個函數(shù)模型是否符合公司要求.
(1)詳見解析;(2)詳見解析.
解析試題分析:(1)根據(jù)題中的條件對函數(shù)的基本要求轉(zhuǎn)化為數(shù)學(xué)語言;(2)對題中的兩個函數(shù)是否滿足(1)中的三個限制條件進(jìn)行驗(yàn)證,對于函數(shù)上述兩個函數(shù)是否滿足題中的條件,主要是研究函數(shù)的單調(diào)性與最值以及恒成立問題,可以利用基本函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)來進(jìn)行求解.
試題解析:(1)由題意知,公司對獎勵方案的函數(shù)模型的基本要求是:
當(dāng)時,
①是增函數(shù);②
恒成立;③
恒成立;
(2)①對于函數(shù)模型:當(dāng)
時,
是增函數(shù),
則顯然恒成立;
而若使函數(shù)在
上恒成立,整理即
恒成立,而
,
∴不恒成立.故該函數(shù)模型不符合公司要求.
②對于函數(shù)模型:
當(dāng)時,
是增函數(shù),則
.∴
恒成立.
設(shè),則
.
當(dāng)時,
,
所以在
上是減函數(shù),
從而.
∴,即
,∴
恒成立.
故該函數(shù)模型符合公司要求.
考點(diǎn):1.函數(shù)的單調(diào)性;2.函數(shù)不等式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù)
,如果對任意
,恒有
(
,
)成立,則稱
為
階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)
時,
,求
的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)
時,
,求證:函數(shù)
在
上無零點(diǎn);
(3)已知函數(shù)為
階縮放函數(shù),且當(dāng)
時,
的取值范圍是
,求
在
(
)上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在R上的單調(diào)遞增函數(shù)滿足
,且
。
(Ⅰ)判斷函數(shù)的奇偶性并證明之;
(Ⅱ)解關(guān)于的不等式:
;
(Ⅲ)設(shè)集合,
.
,若集合
有且僅有一個元素,求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù)
滿足:①對任意
都有:
;②當(dāng)
時,
,回答下列問題.
(1)證明:函數(shù)在
上的圖像關(guān)于原點(diǎn)對稱;
(2)判斷函數(shù)在
上的單調(diào)性,并說明理由.
(3)證明:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是奇函數(shù),并且函數(shù)
的圖像經(jīng)過點(diǎn)(1,3),(1)求實(shí)數(shù)
的值;(2)求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)直線AM,BM相交于點(diǎn)M,且
.
(1)求點(diǎn)M的軌跡的方程;
(2)過定點(diǎn)(0,1)作直線PQ與曲線C交于P,Q兩點(diǎn),且,求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).(I)求函數(shù)
的單調(diào)遞增區(qū)間;
(II) 若關(guān)于的方程
在區(qū)間
內(nèi)恰有兩個不同的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com