日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,某海域內(nèi)的島嶼上有一直立信號塔AB,設(shè)AB延長線與海平面交于點O.測量船在點O的正東方向點C處,測得塔頂A的仰角為30°,然后測量船沿CO方向航行至D處,當CD=100(-1)米時,測得塔頂A的仰角為45°.
          (1)求信號塔頂A到海平面的距離AO;
          (2)已知AB=52米,測量船在沿CO方向航行的過程中,設(shè)DO=x,則當x為何值時,使得在點D處觀測信號塔AB的視角∠ADB最大.

          【答案】分析:(1)由題意知,在△ACD中,∠ACD=30°,∠DAC=15°,利用正弦定理可求得AD,在直角△AOD中,∠ADO=45°,從而可求得AO;
          (2)設(shè)∠ADO=α,∠BDO=β,依題意,tanα=,tanβ=,可求得tan∠ADB=tan(α-β)==,利用基本不等式可求得tan∠ADB的最大值,從而可得答案.
          解答:解:(1)由題意知,在△ACD中,∠ACD=30°,∠DAC=15°,…(2分)
          所以=,得AD=100,…(5分)
          在直角△AOD中,∠ADO=45°,所以AO=100(米);             …(7分)

          (2)設(shè)∠ADO=α,∠BDO=β,由(1)知,BO=48米,
          則tanα=,tanβ=,…(9分)
          tan∠ADB=tan(α-β)===,…(11分)
          所以tan∠ADB==,…(13分)
          當且僅當x=即x=40亦即DO=40時,
          tan∠ADB取得最大值,…(14分)
          此時點D處觀測信號塔AB的視角∠ADB最大.                      …(15分)
          點評:本題考查正弦定理,考查兩角和與差的正切函數(shù),突出考查基本不等式的應(yīng)用,考查分析與運算能力,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          如圖,某海域內(nèi)的島嶼上有一直立信號塔AB,設(shè)AB延長線與海平面交于點O.測量船在點O的正東方向點C處,測得塔頂A的仰角為30°,然后測量船沿CO方向航行至D處,當CD=100(
          3
          -1)米時,測得塔頂A的仰角為45°.
          (1)求信號塔頂A到海平面的距離AO;
          (2)已知AB=52米,測量船在沿CO方向航行的過程中,設(shè)DO=x,則當x為何值時,使得在點D處觀測信號塔AB的視角∠ADB最大.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州市高一(下)期末數(shù)學試卷(解析版) 題型:解答題

          如圖,某海域內(nèi)的島嶼上有一直立信號塔AB,設(shè)AB延長線與海平面交于點O.測量船在點O的正東方向點C處,測得塔頂A的仰角為30°,然后測量船沿CO方向航行至D處,當CD=100(-1)米時,測得塔頂A的仰角為45°.
          (1)求信號塔頂A到海平面的距離AO;
          (2)已知AB=52米,測量船在沿CO方向航行的過程中,設(shè)DO=x,則當x為何值時,使得在點D處觀測信號塔AB的視角∠ADB最大.

          查看答案和解析>>

          同步練習冊答案