日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*
          (1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)t的值;
          (2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項(xiàng)和Tn
          (3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的“積異號數(shù)”,令數(shù)學(xué)公式(n∈N*),在(2)的條件下,求數(shù)列{cn}的“積異號數(shù)”.

          解:(1)由題意可得,當(dāng)n≥2時(shí),有,
          兩式相減,得 an+1 -an =2an,即an+1=3an (n≥2)
          所以,當(dāng)n≥2時(shí),{an}是等比數(shù)列,要使n≥1時(shí){an}是等比數(shù)列,
          則只需,從而得出t=1.
          (2)由(1)得,等比數(shù)列{an}的首項(xiàng)為a1=1,公比q=3,∴
          ,
          ,①(7分)
          上式兩邊乘以3得②,
          ①-②得,

          (3)由(2)知,∵,
          ,,∴c1c2=-1<0.
          ,∴數(shù)列{cn}遞增.
          ,得當(dāng)n≥2時(shí),cn>0.
          ∴數(shù)列{cn}的“積異號數(shù)”為1.
          分析:(1)根據(jù)數(shù)列的第n項(xiàng)與前n項(xiàng)和的關(guān)系可得n≥2時(shí),有,化簡得an+1=3an (n≥2),要使n≥1時(shí){an}是等比數(shù)列,只需,從而得出t的值.
          (2)由(1)得,等比數(shù)列{an}的首項(xiàng)為a1=1,公比q=3,故有,從而得到,用錯位相減法求出數(shù)列{bn}的前n項(xiàng)和Tn
          (3)由條件求得,計(jì)算可得c1c2=-1<0,再由cn+1-cn>0可得,數(shù)列{cn}遞增,由,得當(dāng)n≥2時(shí),cn>0,由此求得數(shù)列{cn}的“積異號數(shù)”為1.
          點(diǎn)評:本題主要考查等比關(guān)系的確定,用錯位相減法對數(shù)列進(jìn)行求和,數(shù)列的第n項(xiàng)與前n項(xiàng)和的關(guān)系,數(shù)列與函數(shù)的綜合,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
          Tn
          ak
          (n,k∈N+,k≤n),則數(shù)列
          SnTn
          Tn(1)+Tn(2)+…+Tn(n)
          的前n項(xiàng)的和是
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          (用a1和q表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若數(shù)列{an}的通項(xiàng)an=
          1
          pn-q
          ,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
          (1)求證:當(dāng)n≥2時(shí),pan<an-1;
          (2)求證sn
          p
          (p-1)(p-q)
          (1-
          1
          pn
          )
          ;
          (3)若an=
          1
          (2n-1)(2n+1-1)
          ,求證sn
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
          a
          2
          n
          +an
          2
          ,n∈N*,
          (1)求證:{an}是等差數(shù)列;
          (2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
          1
          2
          1
          3
          ,
          2
          3
          ,
          1
          4
          ,
          2
          4
          3
          4
          ,
          1
          5
          2
          5
          ,
          3
          5
          ,
          4
          5
          …,
          1
          n
          ,
          2
          n
          ,…,
          n-1
          n
          ,…有如下運(yùn)算和結(jié)論:
          ①a24=
          3
          8

          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為Tn=
          n2+n
          4

          ④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
          5
          7

          其中正確的結(jié)論是
          ①③④
          ①③④
          .(將你認(rèn)為正確的結(jié)論序號都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列命題:
          ①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
          ②在△ABC中,如果A=60°,a=
          6
          ,b=4
          ,那么滿足條件的△ABC有兩解;
          ③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
          ④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
          其中真命題的序號是

          查看答案和解析>>

          同步練習(xí)冊答案