日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax2+x-xlnx(a>0)(a∈R)
          (1)若a=0,判斷函數(shù)的單調(diào)性
          (2)函數(shù)f(x)滿足f(1)=2,且在定義域內(nèi)f(x)≥bx2+2x恒成立,求實數(shù)b的取值范圍;
          (3)當(dāng)
          1
          e
          <x<y<1時,試比較
          y
          x
          1+lny
          1+lnx
          的大。
          分析:(1)把a=0代入函數(shù)解析式,求出導(dǎo)函數(shù)的零點,由導(dǎo)函數(shù)的零點對定義域分段,根據(jù)導(dǎo)函數(shù)在每段的符號可得原函數(shù)的單調(diào)區(qū)間;
          (2)由f(1)=2求出a的值,把f(x)代入f(x)≥bx2+2x,分離變量b后得到b≤1-
          1
          x
          -
          lnx
          x
          ,利用導(dǎo)數(shù)求函數(shù)g(x)=1-
          1
          x
          -
          lnx
          x
          的最小值,則b的取值范圍可求;
          (3)由(Ⅱ)知g(x)=1-
          1+lnx
          x
          在(0,1)上單調(diào)遞減,因為
          1
          e
          <x<y<1,利用函數(shù)單調(diào)性可比較
          y
          x
          1+lny
          1+lnx
          的大。
          解答:解:(1)當(dāng)a=0時,f(x)=x-xlnx,函數(shù)定義域為(0,+∞).
          f(x)=-lnx,由-lnx=0,得x=1.
          x∈(0,1)時,f(x)>0,f(x)在(0,1)上是增函數(shù).
          x∈(1,+∞)時,f(x)<0f(x)在(1,+∞)上是減函數(shù);
          (2)由f(1)=2,得a=1,所以f(x)=x2+x-xlnx,由f(x)≥bx2+2x,得b≤1-
          1
          x
          -
          lnx
          x

          g(x)=1-
          1
          x
          -
          lnx
          x
          ,可得g(x)在(0,1]上遞減,在[1,+∞)上遞增.
          ∴g(x)min=g(1)=0
          即b≤0;
          (3)由(Ⅱ)知g(x)=1-
          1+lnx
          x
          在(0,1)上單調(diào)遞減
          1
          e
          <x<y<1
          時,g(x)>g(y)
          1+lnx
          x
          1+lny
          y

          1
          e
          <x<y<1
          時,-1<lnx<0,∴1+lnx>0
          y
          x
          1+lny
          1+lnx
          點評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求閉區(qū)間上的最值,考查了分離變量法,訓(xùn)練了利用函數(shù)單調(diào)性比較不等式的大小是有一定難度題目.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時,求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
           

          查看答案和解析>>

          同步練習(xí)冊答案