日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1求函數(shù)的最小值及曲線在點(diǎn)處的切線方程;

          (2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

          【答案】(1)最小值為;切線方程為;(2)

          【解析】

          試題分析:(1)首先求得函數(shù)的定義與導(dǎo)函數(shù),然后根據(jù)導(dǎo)函數(shù)與0的關(guān)系得到函數(shù)的單調(diào)性,由此求得函數(shù)的最小值,再根據(jù)導(dǎo)數(shù)的幾何意義求得切線方程的斜率,從而求得切線的方程;(2)首先將問題轉(zhuǎn)化為上恒成立,然后設(shè),從而通過求導(dǎo)研究函數(shù)的單調(diào)性,并求得其最大值,進(jìn)而求得的取值范圍.

          試題解析:(1)函數(shù)的定義域?yàn)?/span>,

          ,

          ,得;令,得;令,得

          故函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

          故函數(shù)的最小值為...........................4分

          ,即切線的斜率為2,

          故所求切線方程為,即,

          化簡得.................................................6分

          (2)不等式恒成立等價(jià)于上恒成立,可得上恒成立,

          設(shè),則

          ,得,或(舍去)

          當(dāng)時(shí),;當(dāng)時(shí),

          當(dāng)變化時(shí)變化情況如下表:

          1

          0

          單調(diào)遞增

          -2

          單調(diào)遞減

          所以當(dāng)時(shí),取得最大值,,所以

          所以實(shí)數(shù)的取值范圍是................................12分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為數(shù)列的前項(xiàng)和,的等比中項(xiàng).

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若為整數(shù),,求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)據(jù),,,是棗強(qiáng)縣普通職工,)個(gè)人的年收入,設(shè)個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個(gè)數(shù)據(jù)中下列說法正確的是

          A.年收入平均數(shù)大大增加,中位數(shù)一定變大,方差可能不變

          B.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差變大

          C.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差也不變

          D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其導(dǎo)函數(shù)為

          1求函數(shù)的極值;

          2當(dāng)時(shí),關(guān)于的不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)(其中

          () 在其定義域內(nèi)為單調(diào)遞減函數(shù),求的取值范圍;

          () 是否存在實(shí)數(shù),使得當(dāng)時(shí),不等式恒成立,如果存在,求的取值范圍,如果不存在,說明理由其中是自然對數(shù)的底數(shù),=2.71828.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

          (1)求證: ;

          (2)若中點(diǎn),求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,其中.

          (1是函數(shù)的極值點(diǎn),求的值;

          (2)求的單調(diào)區(qū)間;

          (3)若上的最大值是0,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱柱中,底面是菱形,且.

          (1) 求證: 平面平面 ;

          (2)若,求平面與平面所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi),對產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計(jì)年銷量Q(萬件)與廣告費(fèi)x(萬件)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每年產(chǎn)1萬件此產(chǎn)品仍需要投入32萬元,若年銷售額為,而當(dāng)年產(chǎn)銷量相等。

          (1)試將年利潤P(萬件)表示為年廣告費(fèi)x(萬元)的函數(shù);

          (2)當(dāng)年廣告費(fèi)投入多少萬元時(shí),企業(yè)年利潤最大?

          查看答案和解析>>

          同步練習(xí)冊答案