日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C1
          x2
          4
          +y2=1
          ,橢圓C2以橢圓C1的長(zhǎng)軸為短軸,且與C1有相同的離心率,則橢圓C2的標(biāo)準(zhǔn)方程為
          y2
          16
          +
          x2
          4
          =1
          y2
          16
          +
          x2
          4
          =1
          分析:求出橢圓C1
          x2
          4
          +y2=1
          的長(zhǎng)軸長(zhǎng),離心率,根據(jù)橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率,即可確定橢圓C2的方程.
          解答:解:橢圓C1
          x2
          4
          +y2=1
          的長(zhǎng)軸長(zhǎng)為4,離心率為e=
          3
          2

          ∵橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率
          ∴橢圓C2的焦點(diǎn)在y軸上,2b=4,離心率為e=
          c
          a
          =
          3
          2

          ∴b=2,a=4
          ∴橢圓C2的方程為
          y2
          16
          +
          x2
          4
          =1;
          故答案為:
          y2
          16
          +
          x2
          4
          =1.
          點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的簡(jiǎn)單性質(zhì),解題的關(guān)鍵是掌握橢圓幾何量關(guān)系,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x2
          4
          +
          y2
          3
          =1
          和拋物線C2:y2=2px(p>0),過點(diǎn)M(1,0)且傾斜角為
          π
          3
          的直線與拋物線交于A、B,與橢圓交于C、D,當(dāng)|AB|:|CD|=5:3時(shí),求p的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x24
          +y2=1
          ,橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率.
          (1)求橢圓C2的方程;
          (2)設(shè)O為坐標(biāo)原點(diǎn),過O的直線l與C1相交于A,B兩點(diǎn),且l與C2相交于C,D兩點(diǎn).若|CD|=2|AB|,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x2
          4
          +
          y2
          3
          =1
          ,其左準(zhǔn)線為l1,右準(zhǔn)線為l2,一條以原點(diǎn)為頂點(diǎn),l1為準(zhǔn)線的拋物線C2交l2于A,B兩點(diǎn),則|AB|等于( 。
          A、2B、4C、8D、16

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓C1
          x2
          4
          +y2=1
          C2
          x2
          16
          +
          y2
          4
          =1
          判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請(qǐng)說明理由;
          (2)寫出與橢圓C1相似且半短軸長(zhǎng)為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(zhì)(不需證明);
          (3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線l對(duì)稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案