日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知, .

          (1)若曲線在點處的切線的斜率為5,求的值;

          (2)若函數(shù)的最小值為,求的值;

          (3)當(dāng)時, 恒成立,求實數(shù)的取值范圍.

          【答案】(1)(2)(3)

          【解析】試題分析:(1)本問考查導(dǎo)數(shù)幾何意義,求導(dǎo)公式和導(dǎo)數(shù)四則運(yùn)算,由題對求導(dǎo)得, ,則,于是;(2)本問考查利用導(dǎo)數(shù)研究函數(shù)的最值, ,當(dāng),則,分別討論當(dāng), 時,函數(shù)的單調(diào)性,從而求出最小值,令最小值等于,求出的值;(3)本問考查恒成立問題的解法,首先將不等式 等價轉(zhuǎn)化為 ,即 ,所以問題轉(zhuǎn)化為求函數(shù)的最小值,利用已經(jīng)得到的單調(diào)性可以求出最小值,進(jìn)而求出的范圍.

          試題解析:(1), , .

          (2)函數(shù)的定義域為

          ,

          ,則

          ①當(dāng),即時,在上, ,函數(shù)單調(diào)遞增,無最小值.

          ②當(dāng),即時,在上, ,函數(shù)單調(diào)遞減;在上, ,函數(shù)單調(diào)遞增,所以函數(shù)的最小值為 ,解得.

          綜上,若函數(shù)的最小值為,則.

          (3)由 得,

          ,即 ,

          ,則 ,

          由(1)可知,當(dāng)時, 上單調(diào)遞減,在上, 單調(diào)遞增,所以在上, ,所以,即.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,以原點為圓心,橢圓的長半軸長為半徑的圓與直線相切.

          )求橢圓的標(biāo)準(zhǔn)方程;

          )已知點為動直線與橢圓的兩個交點,問:在軸上是否存在定點,使得為定值?若存在,試求出點的坐標(biāo)和定值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知矩形的對角線交于點,邊所在直線的方程為,點在邊所在的直線上.

          (1)求矩形的外接圓的方程;

          (2)已知直線),求證:直線與矩形的外接圓恒相交,并求出相交的弦長最短時的直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在上的函數(shù)滿足:對任意、恒成立,當(dāng)時,.

          1求證上是單調(diào)遞增函數(shù);

          2已知,解關(guān)于的不等式

          3,且不等式對任意恒成立.求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.

          (1)求證:OC⊥PD;

          (2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若曲線處的切線互相平行,求的值;

          (2)求的單調(diào)區(qū)間;

          (3)設(shè),若對任意,均存在,使得,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】吉安一中舉行了一次環(huán)保知識競賽活動解本了次競賽學(xué)生成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(分取正整數(shù),滿分為樣(樣本容)進(jìn)行統(tǒng)計. 按照 的分作出率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

          (1)求樣本容量率分布直方圖中的值;

          (2)在選取的樣本中,從競賽學(xué)生成績是分以上(含分)的同學(xué)中隨機(jī)抽取名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)表示所抽取的名同學(xué)中得分在的學(xué)生人數(shù)的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】軸正半軸上一點, 兩點關(guān)于軸對稱,過點任作直線交拋物線兩點.(Ⅰ)求證: ;

          (Ⅱ)若點的坐標(biāo)為,且,試求所有滿足條件的直線的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),現(xiàn)以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

          1)求曲線的普通方程和直線的直角坐標(biāo)方程;

          2)在曲線上是否存在一點,使點到直線的距離最?若存在,求出距離的最小值及點的直角坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案