日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在底面是正方形的四棱錐P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
          (Ⅰ)求證:PD⊥BC;
          (Ⅱ)求二面角B-PD-C的大;
          (Ⅲ)求點(diǎn)A到平面PBC的距離.

          【答案】分析:(Ⅰ)欲證BC⊥PD,先證BC⊥平面PCD,根據(jù)兩平面垂直的性質(zhì)定理可知平面PCD∩平面ABCD=CD,BC⊥CD,即可證得BC⊥平面PCD;
          (Ⅱ)取PD的中點(diǎn)E,連接CE、BE,根據(jù)二面角平面角的定義可知∠CEB為二面角B-PD-C的平面角,在Rt△CEB中求出此角的正切值即可;
          (Ⅲ)過D作DF⊥PC于F,則DF為點(diǎn)D到平面PBC的距離,在等邊△PCD中求出DF即可.
          解答:解:(Ⅰ)證明:∵平面PCD⊥平面ABCD,
          又平面PCD∩平面ABCD=CD,BC⊥CD,∴BC⊥平面PCD,(3分)
          ∵PD?平面PCD,∴BC⊥PD;(4分)

          (Ⅱ)解:取PD的中點(diǎn)E,連接CE、BE,
          ∵△PCD為正三角形,∴CE⊥PD,
          由(Ⅰ)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,
          ∴BE⊥PD,∴∠CEB為二面角B-PD-C的平面角,(7分)
          在△CEB中,∠BCE=90°,BC=2,,∴,
          ∴二面角B-PD-C的大小為;(10分)

          (Ⅲ)解:∵底面ABCD為正方形,∴AD∥BC,
          ∵BC?平面PBC,BC?平面PBC,
          ∴AD∥平面PBC,∴點(diǎn)A到平面PBC的距離等于點(diǎn)D到平面PBC的距離,
          過D作DF⊥PC于F,∵BC⊥平面PCD,∴BC⊥DF,∵PC∩BC=C,
          ∴DF⊥平面PBC,且DF∩平面PBC=F,∴DF為點(diǎn)D到平面PBC的距離,(13分)
          在等邊△PCD中,DC=2,DF⊥PC,∴,
          ∴點(diǎn)A到平面PBC的距離等于.(14分)
          點(diǎn)評:本題主要考查了二面角及其度量,以及平面與平面垂直的性質(zhì)和點(diǎn)、線、面間的距離計(jì)算,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
          (Ⅰ)求證:BD⊥FG;
          (Ⅱ)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
          (Ⅰ)求證:PD⊥BC;
          (Ⅱ)求二面角B-PD-C的大;
          (Ⅲ)求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
          (Ⅰ)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由;
          (Ⅱ)當(dāng)二面角B-PC-D的大小為
          3
          時,求PC與底面ABCD所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在底面是正方形的四棱錐P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
          (I)求證:PD⊥BC;
          (II)求二面角B-PD-C的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一動點(diǎn).
          (1)求證:BD⊥FG;
          (2)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由.
          (3)如果PA=AB=2,求三棱錐B-CDF的體積.

          查看答案和解析>>

          同步練習(xí)冊答案