日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于函數(shù)f(x)=x•sinx,給出下列三個命題:①f(x)是偶函數(shù);②f(x)是周期函數(shù);③f(x)在區(qū)間[0,π]上的最大值為.正確的是    (寫出所有真命題的序號).
          【答案】分析:①研究函數(shù)的奇偶性,可用偶函數(shù)的定義來證明之;
          ②研究的是函數(shù)的周期性,采用舉對立面的形式說明其不成立;
          ③研究函數(shù)的單調(diào)性,可用兩個函數(shù)相乘時單調(diào)性的判斷方法進(jìn)行判斷.
          解答:解:對于①,由于f(-x)=-xsin(-x)=xsinx=f(x),故函數(shù)f(x)是偶函數(shù),①正確;
          對于②,當(dāng)x=2kπ+時,f(x)=x,隨著x的增大函數(shù)值也在增大,所以不會是周期函數(shù),故②錯;
          對于③,由于f'(x)=sinx+xcosx,在區(qū)間[0,]上f'(x)>0,在x=時f'(x)>0,f()=
          所以在x=的右邊,函數(shù)值繼續(xù)增大,故f(x)在區(qū)間[0,π]上的最大值大于,故③錯.
          故答案為:①.
          點評:本題考點是函數(shù)的單調(diào)性判斷與證明,函數(shù)的奇偶性,函數(shù)的中心對稱的判斷及函數(shù)的周期性,涉及到的性質(zhì)比較多,且都是定義型,本題知識性較強(qiáng),做題時要注意準(zhǔn)確運用相應(yīng)的知識準(zhǔn)確解題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)的定義域為R,且對于一切實數(shù)x滿足f(x+2)=f(2-x),f(x+7)=f(7-x)
          (1)若f(5)=9,求:f(-5);
          (2)已知x∈[2,7]時,f(x)=(x-2)2,求當(dāng)x∈[16,20]時,函數(shù)g(x)=2x-f(x)的表達(dá)式,并求出g(x)的最大值和最小值;
          (3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數(shù)為N,求N的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是( 。
          A、[-5,5]
          B、[-
          5
          ,
          5
          ]
          C、[-
          10
          ,
          10
          ]
          D、[-
          5
          2
          ,
          5
          2
          ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結(jié)論
          ①f(x1+x2)=f(x1)•f(x2);
          ②f(x1•x2)=f(x1)+f(x2);
          f(x1)-f(x2)
          x1-x2
          >0

          f(
          x1+x2
          2
          )<
          f(x1)+f(x2)
          2

          當(dāng)f(x)=(
          1
          2
          )x
          時,上述結(jié)論中正確的序號是(  )
          A、①②B、①④C、②③D、③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案