日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量
          m
          =(ax, -a), 
          n
          =(ax, a)
          ,其中a>0且a≠1,
          (1)當(dāng)x為何值時(shí),
          m
          n

          (2)解關(guān)于x的不等式
          m
          +
          |<|
           m
          -
          |
          分析:(1)利用向量垂直的充要條件列出方程,解方程求出x的值.
          (2)利用向量模的平方等于向量的平方,將已知不等式平方展開(kāi),得到指數(shù)不等式;討論底數(shù)與1的大;利用指數(shù)函數(shù)的單調(diào)性求出解集.
          解答:解:(1)因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
          m
          n
          ,所以
          m
          n
          =0,(2分)
          得a2x-a2=0,即a2x=a2.(4分)
          所以2x=2,即x=1,∴當(dāng)x=1時(shí),
          m
          n
          .(6分)
          (2)∵|
          m
          +
          n
          |<|
          m
          -
          n
          |
          ,∴(
          m
          +
          n
          )2<(
          m
          -
          n
          )2
          ,∴
          m
          n
          <0

          所以a2x-a2<0,即a2x<a2.(10分)
          當(dāng)0<a<1時(shí),x>1,當(dāng)a>1時(shí),x<1.
          綜上,當(dāng)0<a<1時(shí),不等式的解集為(1,+∞);
          當(dāng)a>1時(shí),不等式的解集為(-∞,1).(14分)
          點(diǎn)評(píng):本題考查向量垂直的充要條件、考查向量模的性質(zhì):模的平方等于向量的平方、考查指數(shù)函數(shù)的單調(diào)性與底數(shù)與1的大小有關(guān).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          m
          =(1,1)
          ,向量
          n
          與向量
          m
          夾角為
          3
          4
          π
          ,且
          m
          n
          =-1

          (1)若向量
          n
          與向量
          q
          =(1,0)的夾角為
          π
          2
          ,向量
          p
          =(cosA,2cos2
          C
          2
          )
          ,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
          n
          +
          p
          |的取值范圍.
          (2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
          2
          ,關(guān)于x的方程sin(ax+
          π
          3
          )=
          m
          2
          (a>0)
          [0,
          π
          2
          ]
          上有相異實(shí)根,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•蕪湖二模)給出以下五個(gè)命題:
          ①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
          ②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過(guò)點(diǎn)P(
          π
          3
          ,1),則函數(shù)圖象上過(guò)點(diǎn)P的切線斜率等于-
          3

          ③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
          ④函數(shù)f(x)=(
          1
          2
          )x-x
          1
          3
          在區(qū)間(0,1)上存在零點(diǎn).
          ⑤已知向量
          a
          =(1,-2)
          與向量
          b
          =(1,m)
          的夾角為銳角,那么實(shí)數(shù)m的取值范圍是(-∞,
          1
          2

          其中正確命題的序號(hào)是
          ②③④
          ②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013學(xué)年安徽省蕪湖市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:填空題

          給出以下五個(gè)命題:
          ①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
          ②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過(guò)點(diǎn)P(,1),則函數(shù)圖象上過(guò)點(diǎn)P的切線斜率等于
          ③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
          ④函數(shù)在區(qū)間(0,1)上存在零點(diǎn).
          ⑤已知向量與向量的夾角為銳角,那么實(shí)數(shù)m的取值范圍是(
          其中正確命題的序號(hào)是   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知向量
          m
          =(1,1)
          ,向量
          n
          與向量
          m
          夾角為
          3
          4
          π
          ,且
          m
          n
          =-1

          (1)若向量
          n
          與向量
          q
          =(1,0)的夾角為
          π
          2
          ,向量
          p
          =(cosA,2cos2
          C
          2
          )
          ,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
          n
          +
          p
          |的取值范圍.
          (2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
          2
          ,關(guān)于x的方程sin(ax+
          π
          3
          )=
          m
          2
          (a>0)
          [0,
          π
          2
          ]
          上有相異實(shí)根,求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案