日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我們知道,直線與圓的位置關(guān)系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進行研究并完成下面的問題.
          (1)設(shè)F1、F2是橢圓M:的兩個焦點,點F1、F2到直線l:的距離分別為d1、d2,試求d1•d2的值,并判斷直線l與橢圓M的位置關(guān)系.
          (2)設(shè)F1、F2是橢圓M:(a>b>0)的兩個焦點,點F1、F2到直線l:mx+ny+p=0(m、n不同時為零)的距離分別為d1、d2,且直線l與橢圓M相切,試求d1•d2的值.
          (3)試寫出一個能判斷直線與橢圓的相交、相離位置關(guān)系的充要條件(不必證明).
          【答案】分析:(1)利用點到直線的距離公式分別計算d1、d2,代入d1•d2化簡,可以求出d1•d2的值,再通過直線L與橢圓方程消去y得到關(guān)于x的方程,可以求出根的差別式大于零,得到直線L與橢圓M有兩個交點,是相交的位置關(guān)系;
          (2)將直線方程與橢圓方程消去y,得到關(guān)于x的方程.再利用根的判別式可得△=0,從而p2=a2m2+b2n2,將其代入d1•d2的表達式化簡可得d1•d2=b2;
          (3)根據(jù)(2)運算得啟發(fā):直線L與橢圓M相交的充要條件為:d1d2<b2;直線L與橢圓M相離的充要條件為:d1d2>b2
          解答:解:(1)∵F1(-4,0),F(xiàn)2(4,0)到直線的距離分別為


          ∴直線l與橢圓C相交
          (2)F1(-c,0),F(xiàn)2(c,0),直線l與橢圓M相切,點F1、F2在直線l的同側(cè)

          ∴△=0
          ∴p2=b2n2+a2m2

          (3)設(shè)F1、F2是橢圓M:(a>b>0)的兩個焦點,點F1、F2到直線l:mx+ny+p=0(m、n不同時為零)的距離分別為d1、d2,且點F1、F2在直線l的同側(cè),那么,直線l與橢圓M相交的充要條件為:d1•d2<b2;直線l與橢圓M相離的充要條件為:d1•d2>b2;
          點評:本題考查了直線與圓錐曲線的位置關(guān)系、類比推理以及圓錐曲線的綜合應(yīng)用等知識點,屬于難題.本題對運算的要求相當高,解題中應(yīng)注意設(shè)而不求和轉(zhuǎn)化化歸思想的運用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進行研究并完成下面問題.
          (1)設(shè)F1、F2是橢圓M:
          x2
          25
          +
          y2
          9
          =1
          的兩個焦點,點F1、F2到直線L:
          2
          x-y+
          5
          =0的距離分別為d1、d2,試求d1•d2的值,并判斷直線L與橢圓M的位置關(guān)系.
          (2)設(shè)F1、F2是橢圓M:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的兩個焦點,點F1、F2到直線L:mx+ny+p=0(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1•d2的值.
          (3)試寫出一個能判斷直線與橢圓的位置關(guān)系的充要條件,并證明.
          (4)將(3)中得出的結(jié)論類比到其它曲線,請同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          我們知道,直線與圓的位置關(guān)系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進行研究并完成下面的問題.
          (1)設(shè)F1、F2是橢圓M:
          x2
          25
          +
          y2
          9
          =1
          的兩個焦點,點F1、F2到直線l:
          2
          x-y
          +
          5
          =0
          的距離分別為d1、d2,試求d1•d2的值,并判斷直線l與橢圓M的位置關(guān)系.
          (2)設(shè)F1、F2是橢圓M:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的兩個焦點,點F1、F2到直線l:mx+ny+p=0(m、n不同時為零)的距離分別為d1、d2,且直線l與橢圓M相切,試求d1•d2的值.
          (3)試寫出一個能判斷直線與橢圓的相交、相離位置關(guān)系的充要條件(不必證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)

                   我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進行研究并完成下面問題。

             (1)設(shè)F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1·d2的值,并判斷直線L與橢圓M的位置關(guān)系。

             (2)設(shè)F1、F2是橢圓的兩個焦點,點F1、F2到直線        m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1·d2的值。

             (3)試寫出一個能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。

             (4)將(3)中得出的結(jié)論類比到其它曲線,請同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年上海市重點中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

          我們知道,直線與圓的位置關(guān)系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進行研究并完成下面的問題.
          (1)設(shè)F1、F2是橢圓M:的兩個焦點,點F1、F2到直線l:的距離分別為d1、d2,試求d1•d2的值,并判斷直線l與橢圓M的位置關(guān)系.
          (2)設(shè)F1、F2是橢圓M:(a>b>0)的兩個焦點,點F1、F2到直線l:mx+ny+p=0(m、n不同時為零)的距離分別為d1、d2,且直線l與橢圓M相切,試求d1•d2的值.
          (3)試寫出一個能判斷直線與橢圓的相交、相離位置關(guān)系的充要條件(不必證明).

          查看答案和解析>>

          同步練習(xí)冊答案