日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,底面ABCD是邊長(zhǎng)為2的菱形,平面ABCD,,BE與平面ABCD所成的角為.

          1)求證:平面平面BDE

          2)求二面角B-EF-D的余弦值.

          【答案】1)證明見(jiàn)解析;(2

          【解析】

          1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;

          2)以O為坐標(biāo)原點(diǎn),OAOB,OG所在直線分別為x、yz軸建立如圖空間直角坐標(biāo)系,分別求出平面BEF的法向量,平面的法向量,算出即可.

          1)∵平面ABCD平面ABCD.

          .

          又∵底面ABCD是菱形,∴.

          ,∴平面BDE,

          設(shè)ACBD交于O,取BE的中點(diǎn)G,連FG,OG

          ,,四邊形OCFG是平行四邊形

          平面BDE

          平面BDE,

          又因平面BEF,

          ∴平面平面BDE.

          2)以O為坐標(biāo)原點(diǎn),OA,OBOG所在直線分別為x、yz軸建立如圖空間直角坐標(biāo)系

          BE與平面ABCD所成的角為,

          ,,,,.

          設(shè)平面BEF的法向量為,,

          設(shè)平面的法向量

          設(shè)二面角的大小為.

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C的離心率為且經(jīng)過(guò)點(diǎn)

          1)求橢圓C的方程;

          2)過(guò)點(diǎn)(0,2)的直線l與橢圓C交于不同兩點(diǎn)AB,以OA、OB為鄰邊的平行四邊形OAMB的頂點(diǎn)M在橢圓C上,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          1)求曲線的極坐標(biāo)方程和曲線的普通方程;

          2)設(shè)射線與曲線交于不同于極點(diǎn)的點(diǎn),與曲線交于不同于極點(diǎn)的點(diǎn),求線段的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某客戶(hù)考察了一款熱銷(xiāo)的凈水器,使用壽命為十年,改款凈水器為三級(jí)過(guò)濾,每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn).在使用過(guò)程中,一級(jí)濾芯需要不定期更換,其中每更換個(gè)一級(jí)濾芯就需要更換個(gè)二級(jí)濾芯,三級(jí)濾芯無(wú)需更換.其中一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元.記一臺(tái)凈水器在使用期內(nèi)需要更換的二級(jí)濾芯的個(gè)數(shù)構(gòu)成的集合為.如圖是根據(jù)臺(tái)該款凈水器在十年使用期內(nèi)更換的一級(jí)濾芯的個(gè)數(shù)制成的柱狀圖.

          (1)結(jié)合圖,寫(xiě)出集合;

          (2)根據(jù)以上信息,求出一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于元的概率(以臺(tái)凈水器更換二級(jí)濾芯的頻率代替臺(tái)凈水器更換二級(jí)濾芯發(fā)生的概率);

          (3)若在購(gòu)買(mǎi)凈水器的同時(shí)購(gòu)買(mǎi)濾芯,則濾芯可享受折優(yōu)惠(使用過(guò)程中如需再購(gòu)買(mǎi)無(wú)優(yōu)惠).假設(shè)上述臺(tái)凈水器在購(gòu)機(jī)的同時(shí),每臺(tái)均購(gòu)買(mǎi)個(gè)一級(jí)濾芯、個(gè)二級(jí)濾芯作為備用濾芯(其中),計(jì)算這臺(tái)凈水器在使用期內(nèi)購(gòu)買(mǎi)濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶(hù)購(gòu)買(mǎi)凈水器的同時(shí)購(gòu)買(mǎi)備用濾芯的總數(shù)也為個(gè),則其中一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù)應(yīng)分別是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,.

          (1)求曲線在點(diǎn)處的切線方程;

          (2)當(dāng)時(shí),若關(guān)于的方程存在兩個(gè)正實(shí)數(shù)根,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某學(xué)校需要從甲、乙兩名學(xué)生中選一人參加數(shù)學(xué)競(jìng)賽,抽取了近期兩人次數(shù)學(xué)考試的成績(jī),統(tǒng)計(jì)結(jié)果如下表:

          第一次

          第二次

          第三次

          第四次

          第五次

          甲的成績(jī)(分)

          乙的成績(jī)(分)

          (1)若從甲、乙兩人中選出一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選誰(shuí)合適?請(qǐng)說(shuō)明理由.

          (2)若數(shù)學(xué)競(jìng)賽分初賽和復(fù)賽,在初賽中有兩種答題方案:

          方案一:每人從道備選題中任意抽出道,若答對(duì),則可參加復(fù)賽,否則被淘汰.

          方案二:每人從道備選題中任意抽出道,若至少答對(duì)其中道,則可參加復(fù)賽,否則被潤(rùn)汰.

          已知學(xué)生甲、乙都只會(huì)道備選題中的道,那么你推薦的選手選擇哪種答題方條進(jìn)人復(fù)賽的可能性更大?并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) .

          (1)若 ,求曲線 在點(diǎn) 處的切線方程;

          (2)若 處取得極小值,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

          (1)求直線的直角坐標(biāo)方程和曲線的普通方程;

          (2)若曲線為曲線關(guān)于直線的對(duì)稱(chēng)曲線,點(diǎn),分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】公元2020年春,我國(guó)湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會(huì)出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國(guó)科研人員,在研究新型冠狀病毒某種疫苗的過(guò)程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對(duì)小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計(jì)為:①對(duì)參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個(gè)接種周期;③試驗(yàn)共進(jìn)行3個(gè)周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無(wú)關(guān).

          1)若某只小白鼠出現(xiàn)癥狀即對(duì)其終止試驗(yàn),求一只小白鼠至多能參加一個(gè)接種周期試驗(yàn)的概率;

          2)若某只小白鼠在一個(gè)接種周期內(nèi)出現(xiàn)2次或3癥狀,則在這個(gè)接種周期結(jié)束后,對(duì)其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案