日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知A,B是拋物線x2=2py(p>0)上的兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),l為拋物線的準(zhǔn)線.
          (1)若過(guò)A點(diǎn)的拋物線的切線與y軸相交于C點(diǎn),求證:|AF|=|CF|;
          (2)若
          OA
          OB
          +p2=0
          (A、B異于原點(diǎn)),直線OB與過(guò)A且垂直于X軸的直線m相交于P點(diǎn),求P點(diǎn)軌跡方程;
          (3)若直線AB過(guò)拋物線的焦點(diǎn),分別過(guò)A、B點(diǎn)的拋物線的切線相交于點(diǎn)T,求證:
          AT
          BT
          =0
          ,并且點(diǎn)T在l上.
          分析:( 1)由題,可設(shè)A(x1,y1),求導(dǎo)得y=
          x
          p
          ,由點(diǎn)斜式可得過(guò)A點(diǎn)的拋物線的切線為y-y1=
          x1
          p
          (x-x1)
          ,再令x=0解出它與Y軸交點(diǎn)的坐標(biāo),由拋物線的性質(zhì)解出|AF|與|CF|的長(zhǎng)度,比較即可證明出結(jié)論;
          (2)可先設(shè)A(x1,y1),B(x2,y2),P(x,y).代入
          OA
          OB
          +p2=0
          結(jié)合拋物線x2=2py(p>0)得出x1x2=-2p2.再表示出直線OB的方程:y=
          y2
          x2
          x=
          x2
          2p
          x
           ,(1)
          ,直線m的方程:x=x1
             (2)
          ,兩者聯(lián)立,解出P點(diǎn)的軌跡方程;
          (3)可設(shè)T(x0,y0).由題意,求導(dǎo)可得出kAT=
          x1
          p
          ,kBT=
          x2
          p
          .由于AB是焦點(diǎn)弦,可設(shè)AB的方程為y=kx+
          p
          2
          ,代入x2=2py(p>0)得:x2-2pkx-p2=0,由根與系數(shù)的關(guān)系得x1x2=-p2,于是kAT•kBT=-1,故AT⊥BT.由此得
          AT
          BT
          =0
          ,再由點(diǎn)T在直線AT,BT上,由同一性即可得點(diǎn)T在l上
          解答:證明:( 1)設(shè)A(x1,y1),因y=
          x
          p
          ,則過(guò)A點(diǎn)的拋物線的切線為y-y1=
          x1
          p
          (x-x1)
          ,
          令x=0,得yc=y1-
          x
          2
          1
          p
          =-y1
          ,所以|CF|=
          p
          2
          -(-y1)=
          p
          2
          +y1
          ,
          由定義知|AF|等于點(diǎn)A的拋物線的準(zhǔn)線y=-
          p
          2
          的距離,即|AF|=y1-(-
          p
          2
          )=
          p
          2
          +y1
          .所以|AF|=|CF|.    …(4分)
          (2)設(shè)A(x1,y1),B(x2,y2),P(x,y).
          因?yàn)?nbsp;
          OA
          OB
          +p2=0
          ,所以x1x2+y1y2+p2=0,x1x2+
          x
          2
          1
          x
          2
          2
          4p2
          +p2=0
          ,(
          x1
          x
           
          2
          2p
          +p)2=0
          ,即x1x2=-2p2
          直線OB的方程:y=
          y2
          x2
          x=
          x2
          2p
          x
           ,(1)
          ,直線m的方程:x=x1
             (2)
          ,
          (1)×(2)得  xy=
          x1x2
          2p
          x⇒xy+px=0
          ,又x≠0,∴y=-p.即P點(diǎn)軌跡方程為y=-p.…(8分)
          (3)設(shè)A(x1,y1),B(x2,y2),T(x0,y0).則kAT=
          x1
          p
          ,kBT=
          x2
          p

          由于AB是焦點(diǎn)弦,可設(shè)AB的方程為y=kx+
          p
          2
          ,代入x2=2py(p>0)得:x2-2pkx-p2=0,
          ∴x1x2=-p2,于是kAT•kBT=-1,故AT⊥BT.
          由(1)知,AT的方程:y=
          x1
          p
          x-y1
          ,∴y0=
          x1
          p
          x0-y1
          ,即x0x1-py1=py0,同理:x0x2-py2=py0
          ∴AB的方程為x0x-py=py0,又∵AB過(guò)焦點(diǎn),∴-
          p2
          2
          =py0
          ,即y0=-
          p
          2
          ,故T點(diǎn)在準(zhǔn)線l上.…(12分)
          點(diǎn)評(píng):本小題主要考查直線及圓錐曲線,考查方程的思想及解析幾何的基本思想,考查運(yùn)算能力和綜合解題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知A、B是拋物線y2=4x上的兩點(diǎn),O是拋物線的頂點(diǎn),OA⊥OB.
          (I)求證:直線AB過(guò)定點(diǎn)M(4,0);
          (II)設(shè)弦AB的中點(diǎn)為P,求點(diǎn)P到直線x-y=0的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知A,B是拋物線y2=2px(p>0)上兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OA|=|OB|,且△AOB的垂心恰好是此拋物線的焦點(diǎn),則直線AB的方程是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•青浦區(qū)二模)(理)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
          (1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
          (2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
          (3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0=5,試用線段AB中點(diǎn)的縱坐標(biāo)表示線段AB的長(zhǎng)度,并求出中點(diǎn)的縱坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•青浦區(qū)二模)(文)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
          (1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
          (2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
          (3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0>2,試用x0表示線段AB中點(diǎn)的橫坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案