日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 己知f(x)=lnx-ax2-bx.
          (Ⅰ)若a=-1,函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
          (Ⅱ)當(dāng)a=1,b=-1,時,證明函數(shù)f(x)只有一個零點(diǎn).
          分析:(I)將f(x)在(0,+∞)上遞增,轉(zhuǎn)化成f′(x)≥0對x∈(0,+∞)恒成立,即b≤
          1
          x
          +2x對x∈(0,+∞)恒成立,只需b≤(
          1
          x
          +2x)min
          即可,根據(jù)基本不等式可求出(
          1
          x
          +2x)min

          (II)先求出函數(shù)的定義域,然后求出f′(x),在定義域內(nèi)求出f′(x)>0 與f′(x)<0,從而得到函數(shù)f(x)在定義域內(nèi)的單調(diào)性,得到函數(shù)f(x)的最大值為0,從而當(dāng)x≠1時,f(x)<f(1),即f(x)<0,則函數(shù)f(x)只有一個零點(diǎn).
          解答:解:(Ⅰ)依題意:f(x)=lnx+x2-bx
          ∵f(x)在(0,+∞)上遞增,∴f′(x)=
          1
          x
          +2x-b≥0對x∈(0,+∞)恒成立
          即b≤
          1
          x
          +2x對x∈(0,+∞)恒成立,∴只需b≤(
          1
          x
          +2x)min

          ∵x>0,∴
          1
          x
          +2x≥2
          2
          當(dāng)且僅當(dāng)x=
          2
          2
          時取“=”,∴b≤2
          2
          ,
          ∴b的取值范圍為(-∞,2
          2
          ]

          (Ⅱ)當(dāng)a=1,b=1時,f(x)=lnx-x2-b,其定義域是(0,+∞)
          ∴f′(x)=
          1
          x
          -2x+1=-
          2x2-x-1
          x
          =-
          (x-1)(2x+1)
          x

          ∵x>0,∴0<x<1時,f′(x)>0;當(dāng)x>1時,f′(x)<0
          ∴函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減
          ∴當(dāng)x=1時,函數(shù)f(x)取得最大值,其值為f(1)=ln1-12+1=0
          當(dāng)x≠1時,f(x)<f(1),即f(x)<0
          ∴函數(shù)f(x)只有一個零點(diǎn)
          點(diǎn)評:本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減,同時考查了轉(zhuǎn)化與劃歸的思想,分析問題解決問題的能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          己知f(x)=lnx-ax2-bx.
          (Ⅰ)若a=-1,函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),求b的取值范圍;
          (Ⅱ)當(dāng)a=1,b=-1時,判斷函數(shù)f(x)只有的零點(diǎn)個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          己知f(x)=lnx-ax2-bx.
          (1)若a=1,函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
          (2)當(dāng)a=1,b=-1時,證明函數(shù)f(x)只有一個零點(diǎn);
          (3)若f(x)的圖象與x軸交于A(x1,0),B(x2,0)(x1<x2)兩點(diǎn),AB中點(diǎn)為C(x0,0),求證:f'(x0)<0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          己知f(x)=lnx-ax2-bx.
          (Ⅰ)若a=-1,函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
          (Ⅱ)當(dāng)a=1,b=-1,時,證明函數(shù)f(x)只有一個零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年河南省鄭州外國語學(xué)校高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:解答題

          己知f(x)=lnx-ax2-bx.
          (Ⅰ)若a=-1,函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),求b的取值范圍;
          (Ⅱ)當(dāng)a=1,b=-1時,判斷函數(shù)f(x)只有的零點(diǎn)個數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案