日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)的定義域為(-2,2)導函數(shù)為f´(x)=2+cosxf(0)=0,則滿足f(1+x)+f(x-x2)>0的實數(shù)x

          取值范圍為

          (A)(-1,1)         (B)      (C)       (D)

           

          【答案】

          C

          【解析】解:因為由題意,可知函數(shù)f(x)的定義域為(-2,2)導函數(shù)為f´(x)=2+cosxf(0)=0,,所以函數(shù)在定義域內(nèi)單調(diào)遞增,那么并且原函數(shù)為f(x)=2x+sinx+c,因為f(0)=0,,所以c=0,則f(x)=2x+sinx是奇函數(shù),所以原不等式f(1+x)+f(x-x2)>0等價于f(1+x)>-f(x-x2)= f(-x+x2)

          同時要滿足

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1
          3
          x3+
          a-3
          2
          x2+(a2-3a)x-2a

          (I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
          (II)設函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
          x
          2
          1
          +
          x
          2
          2
          +a2
          ,③
          x
          3
          1
          +
          x
          3
          2
          +a3

          中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          問題1:已知函數(shù)f(x)=
          x
          1+x
          ,則f(
          1
          10
          )+f(
          1
          9
          )+
          +f(
          1
          2
          )+f(1)+f(2)+
          …+f(9)+f(10)=
          19
          2
          19
          2

          我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
          1
          2
          )+f(2)
          、…、f(
          1
          9
          )+f(9)
          、f(
          1
          10
          )+f(10)
          可一般表示為f(
          1
          x
          )+f(x)
          =
          1
          x
          1+
          1
          x
          +
          x
          1+x
          =
          1
          1+x
          +
          x
          1+x
          =
          1+x
          1+x
          =1
          為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
          問題2:已知函數(shù)f(x)=
          1
          2x+
          2
          ,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)
          是f(x)圖象上的兩點,橫坐標為
          1
          2
          的點P是M,N的中點.
          (1)求證:y1+y2為定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          (n∈N*,n≥2),求
          lim
          n→∞
          4Sn-9Sn
          4Sn+1+9Sn+1
          的值;
          (3)在(2)的條件下,若an=
          1
          6
          ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          (n∈N*),Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          x+1-a
          a-x
          (x≠a)

          (1)當f(x)的定義域為[a+
          1
          2
          ,a+1]
          時,求f(x)的值域;
          (2)試問對定義域內(nèi)的任意x,f(2a-x)+f(x)的值是否為一個定值?若是,求出這個定值;若不是,說明理由;
          (3)設函數(shù)g(x)=x2+|(x-a)f(x)|,若
          1
          2
          ≤a≤
          3
          2
          ,求g(x)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
          2
          x
          1-x
          ,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點.
          (1)若x1+x2=1,求證:y1+y2為定值;
          (2)設Tn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*且n≥2,求Tn關于n的解析式;
          (3)對(2)中的Tn,設數(shù)列{an}滿足a1=2,當n≥2時,an=4Tn+2,問是否存在角a,使不等式(1-
          1
          a1
          )(1-
          1
          a2
          )
          (1-
          1
          an
          )<
          sinα
          2n+1
          對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案