【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
,
的極坐標方程為
.
(1)求直線與
的交點的軌跡
的方程;
(2)若曲線上存在4個點到直線
的距離相等,求實數(shù)
的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】2018年9月16日下午5時左右,今年第22號臺風“山竹”在廣東江門川島鎮(zhèn)附近正面登陸,給當?shù)厝嗣裨斐闪司薮蟮呢敭a損失,某記者調查了當?shù)啬承^(qū)的100戶居民由于臺風造成的經濟損失,將收集的數(shù)據(jù)分成,
,
,
,
五組,并作出如下頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖估計該小區(qū)居民由于臺風造成的經濟損失的眾數(shù)和平均值.
(Ⅱ)“一方有難,八方支援”,臺風后居委會號召小區(qū)居民為臺風重災區(qū)捐款,記者調查的100戶居民捐款情況如下表格,在表格空白處填寫正確數(shù)字,并說明是否有99%以上的把握認為捐款數(shù)額多于或少于500元和自身經濟損失是否到4000元有關?
(Ⅲ)將上述調查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量受災居民中,采用隨機抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經濟損失超過元的人數(shù)為
,若每次抽取的結果是相互獨立的,求
的分布列及期望
.
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為
,直線
與拋物線
交于
兩點.
(Ⅰ)若直線過焦點
,且與圓
交于
(其中
在
軸同側),求證:
是定值;
(Ⅱ)設拋物線在
和
點的切線交于點
,試問:
軸上是否存在點
,使得
為菱形?若存在,請說明理由并求此時直線
的斜率和點
的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校數(shù)學與統(tǒng)計學院為了對2018年錄取的大一新生有針對性地進行教學.從大一新生中隨機抽取40名,對他們在2018年高考的數(shù)學成績進行調查,統(tǒng)計發(fā)現(xiàn)40名新生的數(shù)學分數(shù)分布在
內.當
時,其頻率
.
(Ⅰ)求的值;
(Ⅱ)請在答題卡中畫出這40名新生高考數(shù)學分數(shù)的頻率分布直方圖,并估計這40名新生的高考數(shù)學分數(shù)的平均數(shù);
(Ⅲ)從成績在100~120分的學生中,用分層抽樣的方法從中抽取5名學生,再從這5名學生中隨機選兩人甲、乙,記甲、乙的成績分別為,求概率
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1- (a>0,a≠1)且f(0)=0.
(1)求a的值;
(2)若函數(shù)g(x)=(2x+1)·f(x)+k有零點,求實數(shù)k的取值范圍;
(3)當x∈(0,1)時,f(x)>m·2x-2恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高三一班、二班各有6名學生去參加學校組織的高中數(shù)學競賽選拔考試,成績如莖葉圖所示.
(1)若一班、二班6名學生的平均分相同,求值;
(2)若將競賽成績在、
、
內的學生在學校推優(yōu)時,分別賦分、2分、3分,現(xiàn)在從一班的6名參賽學生中選兩名,求推優(yōu)時,這兩名學生賦分的和為4分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點、
的坐標分別是
,
,直線
,
相交于點
,且它們的斜率之積為
.
(1)求動點的軌跡方程;
(2)若過點的直線
交動點
的軌跡于
、
兩點, 且
為線段
,
的中點,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com