日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)Sn是數(shù)列{an}(n∈N*)的前n項(xiàng)和,a1=a,且,n=2,3,4,….

          (Ⅰ)證明數(shù)列{aa+2-an}(n≥2)是常數(shù)數(shù)列;

          (Ⅱ)試找出一個(gè)奇數(shù)a,使以18為首項(xiàng),7為公比的等比數(shù)列{bn}(n∈N*)中的所有項(xiàng)都是數(shù)列{an}中的項(xiàng),并指出bn是數(shù)列{an}中的第幾項(xiàng).

          答案:
          解析:

            (I)當(dāng)時(shí),由已知得

            因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0664/0020/25120fa3d0cbc514eceb4e33321fe2b6/C/Image238.gif" width=113 height=24>,所以.  ①

            于是. 、

            由②-①得:. 、

            于是.  ④

            由④-③得:. 、

            即數(shù)列()是常數(shù)數(shù)列.

            (II)由①有,所以

            由③有,所以,

            而⑤表明:數(shù)列分別是以,為首項(xiàng),6為公差的等差數(shù)列.

            所以,,

            由題設(shè)知,.當(dāng)為奇數(shù)時(shí),為奇數(shù),而為偶數(shù),所以不是數(shù)列中的項(xiàng),只可能是數(shù)列中的項(xiàng).

            若是數(shù)列中的第項(xiàng),由,取,得,此時(shí),由,得,從而是數(shù)列中的第項(xiàng).

            (注:考生取滿足的任一奇數(shù),說明是數(shù)列中的第項(xiàng)即可)


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          20、設(shè)Sn是數(shù)列{an}(n∈N*)的前n項(xiàng)和,a1=a,且Sn2=3n2an+Sn-12,an≠0,n=2,3,4,….
          (1)證明數(shù)列{an+2-an}(n≥2)是常數(shù)數(shù)列;
          (2)試找出一個(gè)奇數(shù)a,使以18為首項(xiàng),7為公比的等比數(shù)列{bn}(n∈N*)中的所有項(xiàng)都是數(shù)列{an}中的項(xiàng),并指出bn是數(shù)列{an}中的第幾項(xiàng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          等差數(shù)列{an}中,a3=-5,a6=1,此數(shù)列的通項(xiàng)公式為
           
          ,設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,則S8等于
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}與{bn}滿足關(guān)系,a1=2a,an+1=
          1
          2
          (an+
          a2
          an
          ),bn=
          an+a
          an-a
          (n∈N+,a>0)
          (l)求證:數(shù)列{log3bn}是等比數(shù)列;
          (2)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,當(dāng)n≥2時(shí),Sn與(n+
          4
          3
          )a
          是否有確定的大小關(guān)系?若有,請(qǐng)加以證明,若沒有,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)Sn是數(shù)列{an} 的前n項(xiàng)和,若
          S2nSn
          (n∈N*)
          是非零常數(shù),則稱數(shù)列{an} 為“和等比數(shù)列”.
          (1)若數(shù)列{2bn}是首項(xiàng)為2,公比為4的等比數(shù)列,則數(shù)列 {bn}
           
          (填“是”或“不是”)“和等比數(shù)列”;
          (2)若數(shù)列{cn}是首項(xiàng)為c1,公差為d(d≠0)的等差數(shù)列,且數(shù)列 {cn} 是“和等比數(shù)列”,則d與c1之間滿足的關(guān)系為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且點(diǎn)(n,Sn)在函數(shù)y=x2+2x上,
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)已知bn=2n-1,Tn=
          1
          a1b1
          +
          1
          a2b2
          +…+
          1
          anbn
          ,求Tn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案