日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線的頂在坐標(biāo)原點(diǎn),焦點(diǎn)到直線的距離是
          (1)求拋物線的方程;
          (2)若直線與拋物線交于兩點(diǎn),設(shè)線段的中垂線與軸交于點(diǎn) ,求的取值范圍.
          (1)(2)

          試題分析:(1)已知點(diǎn)到直線的距離利用距離公式 可求得,可直接寫出拋物線方程; (2)把直線方程與拋物線方程聯(lián)立整理成二次方程,用韋達(dá)定理可求出線段中點(diǎn)的坐標(biāo),再寫出中垂線方程,即可求出直線與軸交點(diǎn)的縱坐標(biāo),利用二次函數(shù)求值域的方法可求出的范圍.這個(gè)過程中不用討論判別式,不用討論斜率,值域也是二次函數(shù)的值域問題,是直線與圓錐曲線中的較易者.
          試題解析:(1)由題意,,故 
          所以拋物線的方程為.
          (2)設(shè),則由,
          ,所以線段 的中點(diǎn)坐標(biāo)為,
          線段的中垂線方程為 ,
          ,令,則 ,
          所以.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線經(jīng)過、兩點(diǎn)
          (1)求雙曲線的方程;
          (2)設(shè)直線交雙曲線、兩點(diǎn),且線段被圓三等分,求實(shí)數(shù)的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長(zhǎng)為4的正三角形.
          (1)求橢圓C的方程;
          (2)過右焦點(diǎn)的直線與橢圓C相交于A、B兩點(diǎn),若,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱軸是軸的拋物線經(jīng)過點(diǎn)
          (1)求拋物線的標(biāo)準(zhǔn)方程;
          (2)直線過定點(diǎn),斜率為,當(dāng)為何值時(shí),直線與拋物線有公共點(diǎn)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓經(jīng)過點(diǎn),.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)橢圓的左、右焦點(diǎn)分別為,過點(diǎn)的直線交橢圓兩點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知點(diǎn)在拋物線上.
          (1)若的三個(gè)頂點(diǎn)都在拋物線上,記三邊,,所在直線的斜率分別為,,求的值;
          (2)若四邊形的四個(gè)頂點(diǎn)都在拋物線上,記四邊,所在直線的斜率分別為,,,,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知為橢圓的左、右焦點(diǎn),且點(diǎn)在橢圓上.
          (1)求橢圓的方程;
          (2)過的直線交橢圓兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?
          若存在其最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知雙曲線x2=1.
           
          (1)若一橢圓與該雙曲線共焦點(diǎn),且有一交點(diǎn)P(2,3),求橢圓方程.
          (2)設(shè)(1)中橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,直線l為橢圓的右準(zhǔn)線,Nl上的一動(dòng)點(diǎn),且在x軸上方,直線AN與橢圓交于點(diǎn)M.若AMMN,求∠AMB的余弦值;
          (3)設(shè)過A、F、N三點(diǎn)的圓與y軸交于P、Q兩點(diǎn),當(dāng)線段PQ的中點(diǎn)為(0,9)時(shí),求這個(gè)圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          過點(diǎn)且和拋物線相切的直線方程為                  .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案