日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等比數(shù)列{an}的前n項和為Sn,a1=2,S1,2S2,3S3成等差數(shù)列.
          (1)求數(shù)列{an}的通項公式;
          (2)數(shù)列{bn-an}是首項為-6,公差為2的等差數(shù)列,求數(shù)列{bn}的前n項和.
          分析:(1)利用S1,2S2,3S3成等差數(shù)列,確定數(shù)列的公比,即可求得數(shù)列的通項;
          (2)確定數(shù)列{bn}的通項,利用分組求和,可求數(shù)列{bn}的前n項和.
          解答:解:(1)設等比數(shù)列{an}的公比為q,
          ∵S1,2S2,3S3成等差數(shù)列,
          ∴4S2=S1+3S3
          ∵a1=2,
          ∴4(2+2q)=2+6(1+q+q2),即3q2-q=0,解得q=0(舍去)或q=
          1
          3

          an=2•(
          1
          3
          )n-1
          ;
          (2)由題意得bn-an=2n-8,所以bn=2•(
          1
          3
          )
          n-1
          +2n-8.
          設數(shù)列{bn}的前n項和為Tn,則Tn=
          2[2-(
          1
          3
          )n]
          1-
          1
          3
          +
          n(-6+2n-8)
          2
          =n2-n+3-(
          1
          3
          )
          n-1
          點評:本題考查等差數(shù)列與等比數(shù)列的綜合,考查數(shù)列的通項與求和,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          5、已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知等比數(shù)列{an}中,a2=9,a5=243.
          (1)求{an}的通項公式;
          (2)令bn=log3an,求數(shù)列{
          1bnbn+1
          }的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項,第3項,第2項.
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)設bn=log2an,求數(shù)列{|bn|}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
          12
          ,則n=
          9
          9

          查看答案和解析>>

          同步練習冊答案