日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):

          x

          2

          4

          5

          6

          8

          y

          30

          40

          60

          50

          70

          1)畫出散點(diǎn)圖;

          2)求y關(guān)于x的線性回歸方程。

          3)如果廣告費(fèi)支出為一千萬元,預(yù)測銷售額大約為多少百萬元?

          參考公式

          用最小二乘法求線性回歸方程系數(shù)公式:,

          【答案】(1)見解析;(2);(3)82.5.

          【解析】試題分析:(1)根據(jù)表中所給的五組數(shù)據(jù),得到五個(gè)點(diǎn)的坐標(biāo),在平面直角坐標(biāo)系中畫出散點(diǎn)圖.
          (2)先求出橫標(biāo)和縱標(biāo)的平均數(shù),得到這組數(shù)據(jù)的樣本中心點(diǎn),利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點(diǎn)求出a的值,寫出線性回歸方程.
          (3)將x=10代入回歸直線方程求出y的值即為當(dāng)廣告費(fèi)支出一千萬元時(shí)的銷售額的估計(jì)值.

          試題解析:

          (1)

          .

          (2)

          ;

          于是所求的線性回歸方程是

          (3)當(dāng)時(shí), .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某權(quán)威機(jī)構(gòu)發(fā)布了2014年度“城市居民幸福排行榜”,某市成為本年度城市最“幸福城”.隨后,該市某校學(xué)生會組織部分同學(xué),用“10分制”隨機(jī)調(diào)查“陽光”社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):

          (1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

          (2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!保髲倪@16人中隨機(jī)選取3人,至多有1人是“極幸!钡母怕;

          (3)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“極幸福”的人數(shù),求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠今年1月、2月、3月生產(chǎn)某種產(chǎn)品的數(shù)量分別是1萬件、2萬件、1.3萬件,為了預(yù)測以后每個(gè)月的產(chǎn)量,以這三個(gè)月的產(chǎn)品數(shù)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)yabxc(其中a,bc為常數(shù)),已知4月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個(gè)函數(shù)作為模擬函數(shù)較好?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校運(yùn)動會的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個(gè)數(shù)據(jù)模糊.

          學(xué)生序號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          立定跳遠(yuǎn)

          (單位:米)

          1.96

          1.92

          1.82

          1.80

          1.78

          1.76

          1.74

          1.72

          1.68

          1.60

          30秒跳繩

          (單位:次)

          63

          a

          75

          60

          63

          72

          70

          a-1

          b

          65

          在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則(  )

          A. 2號學(xué)生進(jìn)入30秒跳繩決賽 B. 5號學(xué)生進(jìn)入30秒跳繩決賽

          C. 8號學(xué)生進(jìn)入30秒跳繩決賽 D. 9號學(xué)生進(jìn)入30秒跳繩決賽

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)ax3cxd(a≠0)R上的奇函數(shù),當(dāng)x1時(shí),f(x)取得極值-2.

          1)求函數(shù)f(x)的解析式;

          2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;

          3)證明:對任意x1、x2∈(1,1),不等式|f(x1)f(x2)|<4恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某電動小汽車生產(chǎn)企業(yè),年利潤(出廠價(jià)投入成本)年銷售量.已知上年度生產(chǎn)電動小汽車的投入成本為萬元/輛,出廠價(jià)為萬/輛,年銷售量為輛,本年度為打造綠色環(huán)保電動小汽車,提高產(chǎn)品檔次,計(jì)劃增加投入成本,若每輛電動小汽車投入成本增加的比例為),則出廠價(jià)相應(yīng)提高的比例為.同時(shí)年銷售量增加的比例為.

          (1)寫出本年度預(yù)計(jì)的年利潤(萬元)與投入成本增加的比例的函數(shù)關(guān)系式;

          (2)為了使本年度的年利潤最大,每輛車投入成本增加的比例應(yīng)為多少?最大年利潤是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的多面體中, 平面

          1)在上求作點(diǎn),使平面,請寫出作法并說明理由;

          2)求三棱錐的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動點(diǎn),且滿足,試問直線的斜率是否為定值,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案