日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)選修4-4:矩陣與變換
          已知曲線C1:y=繞原點逆時針旋轉(zhuǎn)45°后可得到曲線C2:y2-x2=2,
          (I)求由曲線C1變換到曲線C2對應(yīng)的矩陣M1;    
          (II)若矩陣,求曲線C1依次經(jīng)過矩陣M1,M2對應(yīng)的變換T1,T2變換后得到的曲線方程.
          (2)選修4-4:坐標系與參數(shù)方程
          已知直線l的極坐標方程是ρcosθ+ρsinθ-1=0.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,在曲線C:(θ為參數(shù))上求一點,使它到直線l的距離最小,并求出該點坐標和最小距離.
          (3)(選修4-5:不等式選講)
          將12cm長的細鐵線截成三條長度分別為a、b、c的線段,
          (I)求以a、b、c為長、寬、高的長方體的體積的最大值;
          (II)若這三條線段分別圍成三個正三角形,求這三個正三角形面積和的最小值.
          【答案】分析:(1)(I)因為把曲線C1逆時針旋轉(zhuǎn)θ角,得到曲線C2,則旋轉(zhuǎn)變換矩陣為
          (II)先求出依次經(jīng)過矩陣M1,M2對應(yīng)的變換T1,T2對應(yīng)的矩陣,再設(shè)曲線C1上任一點經(jīng)過變換后的對應(yīng)點坐標,用變換后的坐標表示變換前的坐標,再代入變換前曲線滿足的方程,化簡即得變換后的曲線方程.
          (2)先由直線l的極坐標方程求出直角坐標方程,設(shè)出曲線C上任意一點P坐標,用點到直線的距離公式求出點P到直線l的距離,再借助基本正弦函數(shù)的最值求出點P到直線l的最小距離.
          (3)(I)因為長方體的體積為abc,而a+b+c=12,應(yīng)用不等式,就可求出體積的最大值.
          (II)先把三個正三角形的面積和用S=表示,因為l+m+n=4,而(l2+m2+n2)(12+12+12)≥(l+m+n)2,所以只需讓S乘3再除3即可變形成公式的形式,求出最值.
          解答:解:(1)(I)∵曲線C1:y=繞原點逆時針旋轉(zhuǎn)45°后得到曲線C2:y2-x2=2,∴旋轉(zhuǎn)變換矩陣=;
          (II)設(shè)依次經(jīng)過矩陣M1,M2對應(yīng)的變換T1,T2對應(yīng)的矩陣
          任取曲線C1:y=上的一點P(x,y),它在變換TM作用下變成點P′(x′,y′),則有,即,∴
          又因為點P在C1:y=上,得到=1即=1.
          (2)∵直線l的極坐標方程是ρcosθ+ρsinθ-1=0,∴直角坐標方程是x+y-1=0
          設(shè)所求的點為P(-1+cosθ,sinθ),則P到直線l的距離d=|
          當θ+,k∈Z時,即θ=2kπ+,k∈Z,d的最小值為-1
          (3)(I)由已知得,a+b+c=12,∴=64;
          當且僅當a=b=c=4時,等號成立.
          (II)設(shè)三個正三角形的邊長分別為l,m,n,則l+m+n=4
          ∴這三個正三角形面積和為S=
          ∴3S=
          ∴S≥
          當且僅當a=b=c=1時,等號成立.
          點評:本題(1)主要考查了曲線的旋轉(zhuǎn)變換矩陣的求法以及根據(jù)旋轉(zhuǎn)變換求曲線方程,(2)考查了極坐標方程與直角坐標方程的互換,(3)考查了均值不等式和柯西不等式的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:江蘇省丹陽市08-09學(xué)年高二下學(xué)期期末測試(理) 題型:解答題

           (本題是選做題,滿分28分,請在下面四個題目中選兩個作答,每小題14分,多做按前兩題給分)

          A.(選修4-1:幾何證明選講)

          如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PBAC于點E,交⊙O于點D,若PEPA,,PD=1,BD=8,求線段BC的長.

           

           

           

           

           

           

          B.(選修4-2:矩陣與變換)

          在直角坐標系中,已知橢圓,矩陣陣,,求在矩陣作用下變換所得到的圖形的面積.

          C.(選修4-4:坐標系與參數(shù)方程)

          直線(為參數(shù),為常數(shù)且)被以原點為極點,軸的正半軸為極軸,方程為的曲線所截,求截得的弦長.

          D.(選修4-5:不等式選講)

          設(shè),求證:.

           

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊答案