【題目】已知函數(shù)為偶函數(shù),且函數(shù)
圖象的兩相鄰對(duì)稱軸間的距離為
.
(1)求的值;
(2)求函數(shù)的對(duì)稱軸方程;
(3)當(dāng)時(shí),方程
有兩個(gè)不同的實(shí)根,求m的取值范圍。
【答案】(1) .(2)
;(3)
【解析】
(1)根據(jù)題意求出φ、ω的值,寫出f(x)的解析式,計(jì)算的值;(2)由f(x)寫出函數(shù)
的解析式,求出對(duì)稱軸方程;(3)若f(x)=m有兩個(gè)不同的實(shí)根,則函數(shù)y=f(x)與y=m有兩個(gè)不同的交點(diǎn),令t=2x,
,則
的圖像與
有兩個(gè)不同交點(diǎn)即可求結(jié)果.
解:(1)是偶函數(shù),則φ﹣
=
+kπ(k∈Z),
解得φ=+kπ(k∈Z),
又因?yàn)?/span>0<φ<π,所以φ=,
所以=2cosωx;
由題意得=2
,所以ω=2;
故f(x)=2cos 2x,
因此=2cos
=
;
(2)由f(x)=2cos 2x,
得=
,
所以,,
即,
所以函數(shù)的對(duì)稱軸方程為
;
(3)若f(x)=m有兩個(gè)不同的實(shí)根,則函數(shù)y=f(x)與y=m有兩個(gè)不同的交點(diǎn),函數(shù)y=f(x)=2cos 2x,令t=2x, ,則
的圖像與
有兩個(gè)不同交點(diǎn),由圖像知
即m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
.
(1)求函數(shù) 的最小正周期;
(2)若 ,且
,求
的值.
【答案】(1) (2)
【解析】試題分析:(1)根據(jù)二倍角公式和兩角和差公式得到,進(jìn)而得到周期;(2)由
,得到
,
,由配湊角公式得到
,代入值得到函數(shù)值.
解析:
(1)由題意
=
所以 的最小正周期為
;
(2)由
又由 得
,所以
故 ,
故
【題型】解答題
【結(jié)束】
20
【題目】為響應(yīng)十九大報(bào)告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬(wàn)元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營(yíng)中,第一年支出
萬(wàn)元,以后每年的支出比上一年增加了
萬(wàn)元,從第一年起每年農(nóng)場(chǎng)品銷售收入為
萬(wàn)元(前
年的純利潤(rùn)綜合=前
年的 總收入-前
年的總支出-投資額
萬(wàn)元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤(rùn)達(dá)到最大?并求出年平均純利潤(rùn)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線W:y2=4x與圓C:(x-1)2+y2=25交于A,B兩點(diǎn),點(diǎn)P為劣弧上不同于A,B的一個(gè)動(dòng)點(diǎn),與x軸平行的直線PQ交拋物線W于點(diǎn)Q,則△PQC的周長(zhǎng)的取值范圍是( )
A. (10,14) B. (12,14)
C. (10,12) D. (9,11)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由四個(gè)相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形.若直角三角形中較小的銳角記作,大正方形的面積是1,小正方形的面積是
,則
的值等于( )
A. 1 B. C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上的焦點(diǎn)為
,離心率為
.
(1)求橢圓方程;
(2)設(shè)過橢圓頂點(diǎn),斜率為
的直線交橢圓于另一點(diǎn)
,交
軸于點(diǎn)
,且
,
,
成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)判斷函數(shù)的單調(diào)性,并說明理由
(2)若對(duì)任意的恒成立,求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在
上的偶函數(shù),且對(duì)任意的
恒有
,已知當(dāng)
時(shí),
,則下列命題:
①對(duì)任意,都有
;②函數(shù)
在
上遞減,在
上遞增;
③函數(shù)的最大值是1,最小值是0;④當(dāng)
時(shí),
.
其中正確命題的序號(hào)有________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在(0,+∞)的單調(diào)函數(shù)f(x),對(duì)任意的x∈(0,+∞)都有f[f(x)﹣log2x]=6.若x0是方程f(x)﹣f′(x)=4的一個(gè)解,且 ,則a=( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河北保定市高三上學(xué)期期末調(diào)研】如圖,四面體中,
、
分別
、
的中點(diǎn),
,
.
(I)求證: 平面
;
(II)求異面直線與
所成角的余弦值的大;
(III)求點(diǎn)到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com