日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知遞增等差數(shù)列中,的等比中項(xiàng),則它的第4項(xiàng)到第11項(xiàng)的和為

          A、180              B、198          C、189          D、168

           

          【答案】

          A

          【解析】

          試題分析:設(shè)首項(xiàng)、公差分別為,則。因,解得:,故所求的和為。選A。

          考點(diǎn):本題主要考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式。

          點(diǎn)評:數(shù)列中的基本問題,往往要依據(jù)題意建立關(guān)于基本量的方程(組)。靈活運(yùn)用數(shù)列的性質(zhì),往往能簡化解題過程。

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項(xiàng)a1=1,且a1、a2、a4成等比數(shù)列.
          (1)求數(shù)列{an}的通項(xiàng)公式an
          (2)設(shè)數(shù)列{cn}對任意n∈N*,都有
          c1
          2
          +
          c2
          22
          +…+
          cn
          2n
          =an+1
          成立,求c1+c2+…+c2012的值.
          (3)在數(shù)列{dn}中,d1=1,且滿足
          dn
          dn+1
          =an+1
          (n∈N*),求表中前n行所有數(shù)的和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知遞增等差數(shù)列{an}中,a1+a2+a3=9,a1•a2•a3=15.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an}的前10項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知遞增等差數(shù)列{an}中,a1+a2+a3=9,a1•a2•a3=15.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an}的前10項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013屆浙江杭州七校高二下期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若不等式對任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

          由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價(jià)于,

          當(dāng)時(shí),;當(dāng)時(shí),;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          當(dāng)時(shí),,成立.

          假設(shè)當(dāng)時(shí),不等式成立,

          當(dāng)時(shí),, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項(xiàng)公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          同步練習(xí)冊答案