日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列{an}滿足 an≤an+1≤3an , n∈N* , a1=1.
          (1)若a2=2,a3=x,a4=9,求x的取值范圍;
          (2)設{an}是公比為q的等比數(shù)列,Sn=a1+a2+…an , 若 Sn≤Sn+1≤3Sn , n∈N* , 求q的取值范圍.
          (3)若a1 , a2 , …ak成等差數(shù)列,且a1+a2+…ak=1000,求正整數(shù)k的最大值,以及k取最大值時相應數(shù)列a1 , a2 , …ak的公差.

          【答案】
          (1)解:依題意: ,

          ;又

          ∴3≤x≤27,

          綜上可得:3≤x≤6


          (2)解:由已知得, ,

          當q=1時,Sn=n, Sn≤Sn+1≤3Sn,即 ,成立.

          當1<q≤3時, , Sn≤Sn+1≤3Sn,即 ,

          不等式

          ∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0對于不等式qn+1﹣3qn+2≤0,令n=1,

          得q2﹣3q+2≤0,

          解得1≤q≤2,又當1≤q≤2,q﹣3<0,

          ∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,

          ∴1<q≤2,

          時,

          Sn≤Sn+1≤3Sn,即 ,

          ∴此不等式即 ,

          3q﹣1>0,q﹣3<0,

          3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,

          qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0

          時,不等式恒成立,

          上,q的取值范圍為:


          (3)解:設a1,a2,…ak的公差為d.由 ,且a1=1,

          當n=1時,﹣ ≤d≤2;

          當n=2,3,…,k﹣1時,由 ,得d≥

          所以d≥ ,

          所以1000=k ,即k2﹣2000k+1000≤0,

          得k≤1999

          所以k的最大值為1999,k=1999時,a1,a2,…ak的公差為﹣


          【解析】(1)依題意: ,又 將已知代入求出x的范圍;(2)先求出通項: ,由 求出 ,對q分類討論求出Sn分別代入不等式 Sn≤Sn+1≤3Sn , 得到關于q的不等式組,解不等式組求出q的范圍.(3)依題意得到關于k的不等式,得出k的最大值,并得出k取最大值時a1 , a2 , …ak的公差.
          【考點精析】解答此題的關鍵在于理解數(shù)列的前n項和的相關知識,掌握數(shù)列{an}的前n項和sn與通項an的關系,以及對等比數(shù)列的基本性質(zhì)的理解,了解{an}為等比數(shù)列,則下標成等差數(shù)列的對應項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,已知橢圓 的離心率為,長軸長為4,過橢圓的左頂點作直線,分別交橢圓和圓于相異兩點

          (1) 若直線的斜率為1,求的值:

          (2) 若,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),,其中a為常數(shù).

          時,設函數(shù),判斷函數(shù)上是增函數(shù)還是減函數(shù),并說明理由;

          設函數(shù),若函數(shù)有且僅有一個零點,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
          (1)設g(x)是函數(shù)f(x)的導函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
          (2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】身體素質(zhì)拓展訓練中,人從豎直墻壁的頂點A沿光滑桿自由下滑到傾斜的木板上(人可看作質(zhì)點),若木板的傾斜角不同,人沿著三條不同路徑AB、ACAD滑到木板上的時間分別為t1、t2t3,若已知ABAC、AD與板的夾角分別為70o、90o105o,則(

          A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能確定t1、t2t3之間的關系

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機變量,則P(X=k)=( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知隨機變量ξ的分布列為

          ξ

          ﹣2

          ﹣1

          0

          1

          2

          3

          P

          若P(ξ2>x)= ,則實數(shù)x的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          1)求證:

          2)若函數(shù)的圖象與直線沒有交點,求實數(shù)的取值范圍;

          3)若函數(shù),則是否存在實數(shù),使得的最小值為?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)求函數(shù)解析式;

          (2)判斷函數(shù)的奇偶性(給出結論即可);

          (3)若方程

          查看答案和解析>>

          同步練習冊答案