日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
          ①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
          ②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
          利用上述結(jié)論完成下列各題:
          (1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
          (2)已知m(m≠-1)為實數(shù),試問函數(shù)數(shù)學(xué)公式的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
          (3)若函數(shù)數(shù)學(xué)公式的圖象關(guān)于點數(shù)學(xué)公式成中心對稱,求t的值.

          解:(1)函數(shù)f(x)=tanx的圖象的對稱中心的坐標為(k∈N*). …(2分)
          當(dāng)k=2n(n∈N*)時,
          當(dāng)k=2n+1(n∈N*)時,,得證. …(6分)
          (2)由,得f(x)的圖象的對稱中心的坐標為(1,1).…(9分),由結(jié)論①得,對實數(shù)m(m≠-1),函數(shù)的圖象關(guān)于點(1,1)成中心對稱. …(12分)
          (3)由結(jié)論②為奇函數(shù),…(14分)
          其中g(shù)(x)=x為奇函數(shù),故為偶函數(shù)
          于是,由h(x)=h(-x)可得,…(16分)
          因此,,解得為所求. …(18分)
          分析:(1)根據(jù)正切函數(shù)圖象觀察出圖象的對稱中心的坐標為再利用①進行證明.
          (2)將函數(shù)化成,據(jù)其簡圖可知對稱中心的坐標為(1,1).再利用②進行證明.
          (3)若函數(shù)的圖象關(guān)于點成中心對稱,則)由結(jié)論②為奇函數(shù),從而轉(zhuǎn)化為,求t的取值即可.
          點評:本題考查閱讀理解、分析解決問題、轉(zhuǎn)化、計算的能力.用到的知識有三角函數(shù)圖象的對稱中心,分式函數(shù)的對稱中心,函數(shù)的奇偶性判斷.三角函數(shù)誘導(dǎo)公式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          將下列命題改寫為“若p,則q”的形式.并判斷真假.
          (1)偶數(shù)能被2整除;
          (2)奇函數(shù)的圖象關(guān)于原點對稱;
          (3)在同圓或等圓中,同弧或等弧所對的圓周角不相等.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•盧灣區(qū)一模)將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
          ①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
          ②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
          利用上述結(jié)論完成下列各題:
          (1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
          (2)已知m(m≠-1)為實數(shù),試問函數(shù)f(x)=
          x+m
          x-1
          的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
          (3)若函數(shù)f(x)=(x-
          2
          3
          )(|x+t|+|x-3|)-4
          的圖象關(guān)于點(
          2
          3
          ,f(
          2
          3
          ))
          成中心對稱,求t的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:盧灣區(qū)一模 題型:解答題

          將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
          ①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
          ②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
          利用上述結(jié)論完成下列各題:
          (1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
          (2)已知m(m≠-1)為實數(shù),試問函數(shù)f(x)=
          x+m
          x-1
          的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
          (3)若函數(shù)f(x)=(x-
          2
          3
          )(|x+t|+|x-3|)-4
          的圖象關(guān)于點(
          2
          3
          ,f(
          2
          3
          ))
          成中心對稱,求t的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年上海市盧灣區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

          將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
          ①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
          ②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
          利用上述結(jié)論完成下列各題:
          (1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
          (2)已知m(m≠-1)為實數(shù),試問函數(shù)的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
          (3)若函數(shù)的圖象關(guān)于點成中心對稱,求t的值.

          查看答案和解析>>

          同步練習(xí)冊答案