日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)直線l:y=k(x-1)過(guò)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          經(jīng)過(guò)點(diǎn)(0,
          3
          ),離心率為
          1
          2
          ,經(jīng)過(guò)橢圓C的右焦點(diǎn)F的直線l交橢圓于A、B兩點(diǎn),點(diǎn)A、F、B在直線x=4上的射影依次為點(diǎn)D、K、E.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若直線l交y軸于點(diǎn)M,且
          MA
          AF
          ,
          MB
          BF
          ,當(dāng)直線l的傾斜角變化時(shí),探求λ+μ的值是否為定值?若是,求出λ+μ的值,否則,說(shuō)明理由;
          (Ⅲ)連接AE、BD,試探索當(dāng)直線l的傾斜角變化時(shí),直線AE與BD是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由.
          分析:(Ⅰ)由題設(shè)知b=
          3
          ,e=
          c
          a
          =
          1
          2
          ,因?yàn)閍2=b2+c2a2=4,c2=1,由此能求出橢圓C的方程.
          (Ⅱ)設(shè)直線l方程y=k(x-1),且l與y軸交于M(0,-1),設(shè)直線l交橢圓于A(x1,y1),B(x2,y2),由
          y=k(x-1)
          x2
          4
          +
          y2
          3
          =1
          得(3+4k2)x2-8k2x+4k2-12=0,再由韋達(dá)定理結(jié)合題設(shè)條件能夠推導(dǎo)出當(dāng)直線l的傾斜角變化時(shí),λ+μ的值為定值-
          8
          3

          (Ⅲ)當(dāng)直線l斜率不存在時(shí),直線l⊥X軸,則ABED為矩形,由對(duì)稱性知,AE與BD相交FK的中點(diǎn)N(
          5
          2
          ,0),
          猜想,當(dāng)直線l的傾斜角變化時(shí),AE與BD相交于定點(diǎn)N(
          5
          2
          ,0)

          證明:由A(x1,y1),B(x2,y2),知D(4,y1),E(4,y2).當(dāng)直線l的傾斜角變化時(shí),首先證直線AE過(guò)定點(diǎn)N(
          5
          2
          ,0),
          再證點(diǎn)N(
          5
          2
          ,0)
          也在直線lBD上;所以當(dāng)m變化時(shí),AE與BD相交于定點(diǎn)(
          5
          2
          ,0)
          解答:解:(Ⅰ)由題設(shè)知b=
          3
          ,e=
          c
          a
          =
          1
          2
          ,因?yàn)閍2=b2+c2a2=4,c2=1,∴橢圓C的方程
          x2
          4
          +
          y2
          3
          =1
          (3分)
          (Ⅱ)易知直線l的斜率存在,設(shè)直線l方程y=k(x-1),且l與y軸交于M(0,-k),設(shè)直線l交橢圓于A(x1,y1),B(x2,y2
          y=k(x-1)
          x2
          4
          +
          y2
          3
          =1
          得(3+4k2)x2-8k2x+4k2-12=0,
          x1+x2=
          8k2
          3+4k2
          ,x1x2=
          4k2-12
          3+4k2
          (6分)
          又由
          MA
          AF
          ,
          ∴(x1,y1)=λ(1-x1,-y1),
          λ=
          x1
          1-x1
          ,同理∴μ=
          x2
          1-x2
          (8分)
          λ+μ=
          x1
          1-x1
          +
          x2
          1-x2
          =
          x1+x2-2x1x2
          1-(x1+x2)+x1x2
          =-
          8
          3

          所以當(dāng)直線l的傾斜角變化時(shí),λ+μ的值為定值-
          8
          3
          ;(10分)
          (Ⅲ)當(dāng)直線l斜率不存在時(shí),直線l⊥X軸,則ABED為矩形,由對(duì)稱性知,AE與BD相交FK的中點(diǎn)N(
          5
          2
          ,0),

          猜想,當(dāng)直線l的傾斜角變化時(shí),AE與BD相交于定點(diǎn)N(
          5
          2
          ,0)
          (11分)
          證明:由(Ⅱ)知A(x1,y1),B(x2,y2),∴D(4,y1),E(4,y2
          當(dāng)直線l的傾斜角變化時(shí),首先證直線AE過(guò)定點(diǎn)N(
          5
          2
          ,0),
          lAE:y-y2=
          y2-y1
          4-x1
          •(x-4)

          當(dāng)x=
          5
          2
          時(shí),y=y2+
          y2-y1
          4-x1
          •(-
          3
          2
          )=
          2(4-x1)•y2-3(y2-y1)
          2(4-x1)
          =
          2(4-x1)•k(x2-1)-3k(x2-x1)
          2(4-x1)
          =
          2(4-x1)•k(x2-1)-3k(x2-x1)
          2(4-x1)
          =
          -8k-2kx2x1+5k(x2+x1)
          2(4-x1)
          =0
          ∴點(diǎn)N(
          5
          2
          ,0)
          在直線lAE上,同理可證,點(diǎn)N(
          5
          2
          ,0)
          也在直線lBD上;∴當(dāng)m變化時(shí),AE與BD相交于定點(diǎn)(
          5
          2
          ,0)
          點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識(shí),解題時(shí)要靈活運(yùn)用圓錐曲線性質(zhì),注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知直角三角形PAB的直角頂點(diǎn)為B,點(diǎn)P的坐標(biāo)為(3,0),點(diǎn)B在y軸上,點(diǎn)A在x軸的負(fù)半軸上,在BA的延長(zhǎng)線上取一點(diǎn)C,使
          BC
          =3
          BA

          (1)當(dāng)B在y軸上移動(dòng)時(shí),求動(dòng)點(diǎn)C的軌跡方程;
          (2)若直線l:y=k(x-1)與點(diǎn)C的軌跡交于M、N兩點(diǎn),設(shè)D(-1,0),當(dāng)∠MDN為銳角時(shí),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          直線l:y=k(x-2)+2與圓x2+y2-2x-2y=0有兩個(gè)不同的公共點(diǎn),則k的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2008•成都三模)已知O為坐標(biāo)原點(diǎn),點(diǎn)E、F的坐標(biāo)分別為(-
          2
          ,0)、(
          2
          ,0),點(diǎn)A、N滿足
          AE
          =2
          3
          ,
          ON
          =
          1
          2
          (
          OA
          +
          OF
          )
          ,過(guò)點(diǎn)N且垂直于AF的直線交線段AE于點(diǎn)M,設(shè)點(diǎn)M的軌跡為C.
          (1)求軌跡C的方程;
          (2)若軌跡C上存在兩點(diǎn)P和Q關(guān)于直線l:y=k(x+1)(k≠0)對(duì)稱,求k的取值范圍;
          (3)在(2)的條件下,設(shè)直線l與軌跡C交于不同的兩點(diǎn)R、S,對(duì)點(diǎn)B(1,0)和向量a=(-
          3
          ,3k),求
          BR
          BS
          -|a|2
          取最大值時(shí)直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圓C:(x+1)2+(y-2)2=4
          (1)若直線l:y=k(x-2)與圓C有且只有一個(gè)公共點(diǎn),求直線l的斜率k的值;
          (2)若直線m:y=kx+2被圓C截得的弦AB滿足OA⊥OB(O是坐標(biāo)原點(diǎn)),求直線m的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知拋物線C:y2=8x,O為坐標(biāo)原點(diǎn),動(dòng)直線l:y=k(x+2)與拋物線C交于不同兩點(diǎn)A,B
          (1)求證:
          OA
          OB
          為常數(shù);
          (2)求滿足
          OM
          =
          OA
          +
          OB
          的點(diǎn)M的軌跡方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案