日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax2-2
          4+2b-b2
          x
          ,g(x)=-
          1-(x-a)2
          (a,b∈R).
          (1)當(dāng)b=0時(shí),若f(x)在(-∞,2]上單調(diào)遞減,求a的取值范圍;
          (2)求滿足下列條件的所有整數(shù)對(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
          (3)對滿足(2)中的條件的整數(shù)對(a,b),奇函數(shù)h(x)的定義域和值域都是區(qū)間[-k,k],且x∈[-k,0]時(shí),h(x)=f(x),求k的值.
          分析:(1)當(dāng)b=0時(shí),若f(x)在(-∞,2]上單調(diào)遞減,則此區(qū)間必是函數(shù)定義上單調(diào)遞減區(qū)間的子集,由此可以求出a的取值范圍
          (2)研究兩個(gè)函數(shù)的最值,由于g(x)=-
          1-(x-a)2
          在x=a時(shí)取到最小值,故求出f(x)=ax2-2
          4+2b-b2
          x
          取最大值的x0,令其等于a.
          (3)由題設(shè)條件,根據(jù)奇函數(shù)的性質(zhì)求出h(x)在[-k,k]上的解析式,再根據(jù)其定義域和值域都是區(qū)間[-k,k],即可得到關(guān)于k的等式求出k的值.
          解答:解:(1)當(dāng)b=0時(shí),f(x)=ax2-4x
          若a=0,則f(x)=-4x符合條件,
          若a≠0,則
          a>0
          4
          2a
          ≥2
          ∴0<a≤1,a的取值范圍0≤a≤1
          (2)a=0時(shí),f(x)無最大值∴a≠0必有
          a<0
          4+2a-b2≥0
          ?
          a<0
          1-
          5
          ≤b≤1+
          5
          于是x0=a=
          4+2b-b2
          a
          ,則a2=
          5-(b-1)2
          ,
          ∴a=-1,b=-1或3
          因此符合條件的整數(shù)對為(-1,-1)和(-1,3).
          (3)對于(2)的整數(shù)對(a,b),f(x)=-x2-2x,(7)當(dāng)x∈[0,k]時(shí),h(x)=-h(-x)=-f(-x)=x2-2x
          ∴h(x)=
          -x2-2x,-k≤x≤0
          x2-2x,0<x≤k
          ,由x2-2x=x,得x=3,由-x2-2x=x,得x=-3.
          由圖象可知,x∈[-1,1]時(shí),h(x)∈[-1,1]
          x∈[-3,3]時(shí),h(x)∈[-3,3]
          ∴k=1或k=3
          點(diǎn)評:本題考點(diǎn)是函數(shù)的最值及其幾何意義,解此類題的關(guān)鍵是正確判斷函數(shù)的單調(diào)性,確定函數(shù)的最值在什么位置取到,求解中要注意到函數(shù)的特殊性,如本題中g(x)=-
          1-(x-a)2
          的最值根據(jù)觀察得出.靈活選用判斷方法,可以降低解題的難度.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          12x+1

          (1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
          (2)確定a的值,使f(x)為奇函數(shù);
          (3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)
          a-x  ,x≤0
          1  ,0<x≤3
          (x-5)2-a,x>3
          (a>0且a≠1)圖象經(jīng)過點(diǎn)Q(8,6).
          (1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
          (2)求函數(shù)f(t)-9的零點(diǎn);
          (3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          1
          2x+1
          ,若f(x)為奇函數(shù),則a=( 。
          A、
          1
          2
          B、2
          C、
          1
          3
          D、3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a(x-1)x2
          ,其中a>0.
          (I)求函數(shù)f(x)的單調(diào)區(qū)間;
          (II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
          (III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          12x-1
          ,(a∈R)
          (1)求f(x)的定義域;
          (2)若f(x)為奇函數(shù),求a的值;
          (3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案