日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•淮安模擬)如圖,已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn),試用空間向量知識(shí)解下列問題:
          (1)求證:AB1⊥平面A1BD;
          (2)求二面角A-A1D-B的余弦值大。
          分析:取BC中點(diǎn)O,連AO,利用正三角形三線合一,及面面垂直的性質(zhì)可得AO⊥平面BCB1C1,取B1C1中點(diǎn)為O1,以O(shè)為原點(diǎn),
          OB
          ,
          OO1
          OA
          的方向?yàn)閤,y,z軸的正方向,建立空間直角坐標(biāo)系,
          (1)求出AB1的方向向量
          AB1
          ,
          BD
          BA1
          利用向量垂直的充要條件及線面垂直的判定定理可得AB1⊥平面A1BD;
          (2)分別求出平面A1AD的法向量和平面A1AD的一個(gè)法向量代入向量夾角公式,可得二面角A-A1D-B的余弦值大。
          解答:證明:(1)取BC中點(diǎn)O,連AO,
          ∵△ABC為正三角形,
          ∴AO⊥BC
          又∵平面ABC⊥平面BCB1C1,平面ABC∩平面BCB1C1=BC,AO?平面ABC
          ∴AO⊥平面BCB1C1,…(2分)
          取B1C1中點(diǎn)為O1,
          以O(shè)為原點(diǎn),
          OB
          ,
          OO1
          OA
          的方向?yàn)閤,y,z軸的正方向,
          建立空間直角坐標(biāo)系,
          則B(1,0,0),D(-1,1,0),A1(0,2,
          3
          ),A(0,0,
          3
          ),B1(1,2,0)
          …(4分)
          AB1
          =(1,2,-
          3
          ),
          BD
          =(-2,1,0),
          BA1
          =(-1,2,
          3
          )
          ,
          AB1
          BD
          =-2+2+0=0
          ,
          AB1
          BA1
          =-1+4-3=0
          ,
          AB1
          BD
          ,
          AB1
          BA1

          ∴AB1⊥平面A1BD.…(6分)
          (2)設(shè)平面A1AD的法向量為
          n
          =(x,y,z)

          AD
          =(-1,1,-
          3
          ),
          AA1
          =(0,2,0)

          n
          AD
          ,
          n
          AA1
          ,
          n
          AD
          =0
          n
          AA1
          =0

          -x+y-
          3
          z=0
          2y=0
          ,
          解得
          y=0
          x=-
          3
          z
          ,
          令z=1,得
          n
          =(-
          3
          ,0,1)
          為平面A1AD的一個(gè)法向量,…(8分)
          由(1)知AB1⊥平面A1BD,
          AB1
          為平面A1AD的法向量,
          cos<
          n
          ,
          AB1
          >=
          n
          AB1
          |
          n
          ||
          AB1
          |
          =
          -
          3
          -
          3
          2×2
          2
          =-
          6
          4
          ,
          ∴二面角A-A1D-B的余弦值大小為cosθ=
          6
          4
          .…(10分)
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,直線與平面垂直的判定,建立空間坐標(biāo)系,將空間線線垂直轉(zhuǎn)化為向量垂直,將空間二面角轉(zhuǎn)化為向量夾角是解答的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•淮安模擬)已知函數(shù)f(x)=lnx-x+1,x∈(0,+∞).
          (1)求f(x)的單調(diào)區(qū)間和極值;
          (2)設(shè)a≥1,函數(shù)g(x)=x2-3ax+2a2-5,若對(duì)于任意x0∈(0,1),總存在x1∈(0,1),使得f(x1)=g(x0)成立,求a的取值范圍;
          (3)對(duì)任意x∈(0,+∞),求證:
          1
          x+1
          <ln
          x+1
          x
          1
          x

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•淮安模擬)若關(guān)于x的不等式x2+9+|x2-3x|≥kx在[1,5]上恒成立,則實(shí)數(shù)k的范圍為
          (-∞,6]
          (-∞,6]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•淮安模擬)已知U為實(shí)數(shù)集,集合M={x|0<x<2},N={x|y=
          x-1
          }
          ,則M∩(?UN)=
          {x|0<x<1}
          {x|0<x<1}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•淮安模擬)若向圓x2+y2=4所圍成的區(qū)域內(nèi)隨機(jī)地丟一粒豆子,則豆子落在直線x-y+2=0上方的概率是
          1
          4
          -
          1
          1
          4
          -
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•淮安模擬)某同學(xué)在求方程lgx=2-x的近似解(精確到0.1)時(shí),設(shè)f(x)=lgx+x-2,發(fā)現(xiàn)f(1)<0,f(2)>0,他用“二分法”又取了4個(gè)值,通過計(jì)算得到方程的近似解為x≈1.8,那么他所取的4個(gè)值中的第二個(gè)值為
          1.75
          1.75

          查看答案和解析>>

          同步練習(xí)冊(cè)答案