日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,函數(shù)

          1)當時,寫出的單調(diào)遞增區(qū)間(不需寫出推證過程);

          2)當時,若直線與函數(shù)的圖象相交于兩點,記,求的最大值;

          3)若關(guān)于的方程在區(qū)間上有兩個不同的實數(shù)根,求實數(shù)的取值范圍.

          【答案】1;(24;(3

          【解析】

          1)當時,,由此能求出的單調(diào)遞增區(qū)間;

          2)由,得當時,的圖象與直線沒有交點;當 時,y=fx的圖象與直線只有一個交點;當時,;當時,由,得,由,得,由此能求出的最大值;

          3)要使關(guān)于x的方程有兩個不同的實數(shù)根,則,且,根據(jù),且進行分類討論能求出的取值范圍.

          1)當時,

          單調(diào)遞增

          2)因為x0,所以

          (ⅰ)當a4時,,函數(shù)的 ,

          函數(shù)的圖像與直線y4沒有交點;

          (ⅱ)當a4時, ,函數(shù)的最小值是4

          的圖象與直線只有一個交點;

          時, 有1個交點,交點坐標,不滿足條件;

          (ⅲ)當0a4時,

          ,

          ;

          (ⅳ)當a0時,如圖:

          ,

          解得;

          ,

          解得.

          所以.

          綜上:的最大值是4.

          )要使關(guān)于的方程 *

          時,去絕對值得,解得,不成立,舍;

          時,去絕對值

          化簡為:,不成立,舍;

          時,,,也不成立,舍;

          .

          (ⅰ)當時,由(*)得

          所以,不符合題意;

          (ⅱ)當時,由(*)得,其對稱軸,不符合題意;

          (ⅲ)當,且時,

          時,,

          整理為:,不成立,

          時,

          要使直線與函數(shù)圖像在內(nèi)有兩個交點,

          時,,當時,

          只需滿足

          解得:;①

          整理得: ,

          若在區(qū)間方程有2個不等實數(shù)根,只需滿足

          ,

          解得: ②,

          綜上①②可知,的范圍是

          綜上所述,a的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列結(jié)論中正確的個數(shù)是(

          ①正三棱錐的頂點在底面的射影到底面各頂點的距離相等;

          ②有兩個側(cè)面是矩形的棱柱是直棱柱;

          ③兩個底畫平行且相似的多面體是棱臺;

          ④底面是正三角形,其余各面都是等腰三角形的三棱錐一定是正三棱錐.

          A.0B.1C.5D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以下不等式中錯誤的是( 。

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正四棱錐中,EF分別為棱VA,VC的中點.

          (1)求證:EF平面ABCD

          (2)求證:平面VBD平面BEF

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列四個結(jié)論:

          當a為任意實數(shù)時,直線(a﹣1)x﹣y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標準方程是;

          已知雙曲線的右焦點為(5,0),一條漸近線方程為2x﹣y=0,則雙曲線的標準方程是;

          拋物線的準線方程為.

          已知雙曲線,其離心率e(1,2),則m的取值范圍是(﹣12,0).

          其中正確命題的序號是___________.(把你認為正確命題的序號都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點,.

          (1)求證:∥平面;

          (2)求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】己知為異面直線,平面平面.直線滿足,則( )

          A. ,且 B. ,且

          C. 相交,且交線垂直于 D. 相交,且交線平行于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗,其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).

          1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);

          2)當日產(chǎn)量為多少時,可獲得最大利潤?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)拋物線的頂點為坐標原點,焦點軸的正半軸上,點是拋物線上的一點,以為圓心,2為半徑的圓與軸相切,切點為.

          (I)求拋物線的標準方程:

          (Ⅱ)設(shè)直線軸上的截距為6,且與拋物線交于,兩點,連接并延長交拋物線的準線于點,當直線恰與拋物線相切時,求直線的方程.

          查看答案和解析>>

          同步練習(xí)冊答案