【題目】下列函數(shù)中的奇函數(shù)是( )
A.f(x)=x+1
B.f(x)=3x2﹣1
C.f(x)=2(x+1)3﹣1
D.f(x)═﹣
【答案】D
【解析】解:A.f(x)=x+1,f(﹣x)=﹣x+1,不滿足f(﹣x)=﹣f(x),不為奇函數(shù);
B.f(x)=3x2﹣1,f(﹣x)=3(﹣x)2﹣1=f(x),f(x)為偶函數(shù);
C.f(x)=2(x+1)3﹣1,f(﹣x)=2(﹣x+1)3﹣1,不滿足f(﹣x)=﹣f(x),不為奇函數(shù);
D.f(x)═﹣ ,f(﹣x)═
=﹣f(x),則f(x)為奇函數(shù).
故選:D.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的奇偶性的相關知識可以得到問題的答案,需要掌握偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓
外切,與圓
內切.
(Ⅰ)試求動圓圓心的軌跡的方程;
(Ⅱ)與圓相切的直線
與軌跡
交于
兩點,若直線
的斜率成等比數(shù)列,試求直線
的方程;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產品的三個質量指標分別為x,y,z,用綜合指標S=x+y+z評價該產品的等級.若S≤4, 則該產品為一等品.先從一批該產品中,隨機抽取10件產品作為樣本,其質量指標列表如下:
產品編號 | A1 | A2 | A3 | A4 | A5 |
質量指標 (x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產品編號 | A6 | A7 | A8 | A9 | A10 |
質量指標 (x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(1)利用上表提供的樣本數(shù)據(jù)估計該批產品的一等品率;
(2)在該樣本的一等品中, 隨機抽取2件產品,
(ⅰ) 用產品編號列出所有可能的結果;
(ⅱ) 設事件B為“在取出的2件產品中, 每件產品的綜合指標S都等于4”, 求事件B發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達式并判斷其奇偶性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a是實數(shù),f(x)=a﹣ (x∈R).
(1)證明不論a為何實數(shù),f(x)均為增函數(shù);
(2)若f(x)滿足f(﹣x)+f(x)=0,解關于x的不等式f(x+1)+f(1﹣2x)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.
(1)到第幾年末總利潤最大,最大值是多少?
(2)到第幾年末年平均利潤最大,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com