【題目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.
(1)當a=3時,求A∩B;
(2)若A∪B=R,求實數(shù)a的取值范圍.
【答案】(1)A∩B={x|-1<x或2<x<3};(2)[2,+∞).
【解析】
(1)結(jié)合不等式的解法,求出集合的等價條件,結(jié)合集合交集的定義進行求解即可.(2)結(jié)合A∪B=R,建立不等式關(guān)系進行求解即可.
解:(1)當a=3時,A={x|x2-2x-3<0}={x|-1<x<3},
B={x|<0}={x|x>2或x<-
}.
則A∩B={x|-1<x或2<x<3}.
(2)A={x|x2-(a-1)x-a<0}={x|(x+1)(x-a)<0},B={x|x>2或x<-}.
若A∪B=R,則a≥2,即實數(shù)a的取值范圍是[2,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減
千元;方案二:金額超過
萬元(含
萬元),可搖號三次,其規(guī)則是依次裝有
個幸運號、
個吉祥號的一個搖號機,裝有
個幸運號、
個吉祥號的二號搖號機,裝有
個幸運號、
個吉祥號的三號搖號機各搖號一次,其優(yōu)惠情況為:若搖出
個幸運號則打
折,若搖出
個幸運號則打
折;若搖出
個幸運號則打
折;若沒有搖出幸運號則不打折.
(1)若某型號的車正好萬元,兩個顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
(2)若你評優(yōu)看中一款價格為萬的便型轎車,請用所學(xué)知識幫助你朋友分析一下應(yīng)選擇哪種付款方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品.現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至多有1人喜歡甜品的概率.
附:.
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0),若f(
)=f(
),且f(x)在區(qū)間(
,
)上有最小值,無最大值,則ω=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 :
過點
的直線交拋物線
于
兩點,設(shè)
(1)若點 關(guān)于
軸的對稱點為
,求證:直線
經(jīng)過拋物線
的焦點
;
(2)若求當
最大時,直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=(ax2+ax+x+a)e﹣x(a≤0).
(1)討論y=f(x)的單調(diào)性;
(2)當a=0時,若f(x1)=f(x2) (x1≠x2),求證x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點P(2,0).
(I)求橢圓C的短軸長與離心率;
( II)過(1,0)的直線與橢圓C相交于M、N兩點,設(shè)MN的中點為T,判斷|TP|與|TM|的大小,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com