日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=在x=2處連續(xù),則a等于(    )

          A.-            B.-                 C.             D.

          解析:f(x)=(-)===.

              f(x)=a=f(2),∴a=.

          答案:C

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
          12
          (1+x2)
          ;②f(x)在R上的最小值為0.
          (1)求f(1)的值及f(x)的解析式;
          (2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
          (3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•鐵嶺模擬)設(shè)函數(shù)f(x)=
          1
          2
          x2-tx+3lnx
          g(x)=
          2x+t
          x2-3
          ,已知x=a,x=b為函數(shù)f(x)的極值點(diǎn)(0<a<b)
          (1)求函數(shù)g(x)在(-∞,-a)上的單調(diào)區(qū)間,并說明理由.
          (2)若曲線g(x)在x=1處的切線斜率為-4,且方程g(x)-m=0有兩個不相等的負(fù)實(shí)根,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義域為D,若存在非零實(shí)數(shù)h使得對于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),則稱f(x)為M上的“h階高調(diào)函數(shù)”.給出如下結(jié)論:
          ①若函數(shù)f(x)在R上單調(diào)遞增,則存在非零實(shí)數(shù)h使f(x)為R上的“h階高調(diào)函數(shù)”;
          ②若函數(shù)f(x)為R上的“h階高調(diào)函數(shù)”,則f(x)在R上單調(diào)遞增;
          ③若函數(shù)f(x)=x2為區(qū)間[-1,+∞)上的“h階高誣蔑財函數(shù)”,則h≥2;
          ④若函數(shù)f(x)在R上的奇函數(shù),且x≥0時,f(x)=|x-1|-1,則f(x)只能是R上的“4階高調(diào)函數(shù)”.
          其中正確結(jié)論的序號為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:單選題

          設(shè)函數(shù)f(x)的定義域為D,若存在非零實(shí)數(shù)h使得對于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),則稱f(x)為M上的“h階高調(diào)函數(shù)”.給出如下結(jié)論:
          ①若函數(shù)f(x)在R上單調(diào)遞增,則存在非零實(shí)數(shù)h使f(x)為R上的“h階高調(diào)函數(shù)”;
          ②若函數(shù)f(x)為R上的“h階高調(diào)函數(shù)”,則f(x)在R上單調(diào)遞增;
          ③若函數(shù)f(x)=x2為區(qū)間[-1,+∞)上的“h階高誣蔑財函數(shù)”,則h≥2;
          ④若函數(shù)f(x)在R上的奇函數(shù),且x≥0時,f(x)=|x-1|-1,則f(x)只能是R上的“4階高調(diào)函數(shù)”.
          其中正確結(jié)論的序號為


          1. A.
            ①③
          2. B.
            ①④
          3. C.
            ②③
          4. D.
            ②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
          1
          2
          (1+x2)
          ;②f(x)在R上的最小值為0.
          (1)求f(1)的值及f(x)的解析式;
          (2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
          (3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

          查看答案和解析>>

          同步練習(xí)冊答案