日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. -
          3
          ≤θ≤
          3
          ,則sinθ的取值范圍是
           
          分析:先根據(jù)θ的范圍可確定-
          π
          2
          、
          π
          2
          均在此范圍內(nèi),再結(jié)合正弦函數(shù)的最值和單調(diào)性可直接得到答案.
          解答:解:∵-
          3
          ≤θ≤
          3
          ,
          當(dāng)θ=-
          π
          2
          時,sinθ=-1,當(dāng)θ=
          π
          2
          時,sinθ=1
          ∴-1≤sinθ≤1
          故答案為:[-1,1]
          點(diǎn)評:本題主要考查正弦函數(shù)的最值.考查對基礎(chǔ)知識的理解程度.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
          (1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
          (2)若(-2,0)是f(x)的一個“P數(shù)對”,且當(dāng)x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
          (3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
          ①f(2-n)與2-n+2(n∈N*);
          ②f(x)與2x+2(x∈(0,1]).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•棗莊二模)已知拋物線x2=2py上點(diǎn)(2,2)處的切線經(jīng)過橢圓E:
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)
          的兩個頂點(diǎn).
          (1)求橢圓E的方程;
          (2)過橢圓E的上頂點(diǎn)A的兩條斜率之積為-4的直線與該橢圓交于B,C兩點(diǎn),是否存在一點(diǎn)D,使得直線BC恒過該點(diǎn)?若存在,請求出定點(diǎn)D的坐標(biāo);若不存在,請說明理由;
          (3)在(2)的條件下,若△ABC的重心為G,當(dāng)邊BC的端點(diǎn)在橢圓E上運(yùn)動時,求|GA|2+|GB|2+|GC|2的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•上海模擬)以下有四個命題:
          ①一個等差數(shù)列{an}中,若存在ak+1>ak>O(k∈N),則對于任意自然數(shù)n>k,都有an>0;
          ②一個等比數(shù)列{an}中,若存在ak<0,ak+1<O(k∈N),則對于任意n∈N,都有an<0;
          ③一個等差數(shù)列{an}中,若存在ak<0,ak+1<0(k∈N),則對于任意n∈N,都有an<O;
          ④一個等比數(shù)列{an}中,若存在自然數(shù)k,使ak•ak+1<0,則對于任意n∈N,都有an.a(chǎn)n+1<0;
          其中正確命題的個數(shù)是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆廣東省東莞市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(A)(解析版) 題型:解答題

          根據(jù)以往資料統(tǒng)計(jì),大學(xué)生購買某品牌平板電腦時計(jì)劃采用分期付款的期數(shù)ζ的分布列為

          ζ

          1

          2

          3

          P

          0.4

          0.25

          0.35

          (1)若事件A={購買該平板電腦的3位大學(xué)生中,至少有1位采用1期付款},求事件A的概率P(A);

          (2)若簽訂協(xié)議后,在實(shí)際付款中,采用1期付款的沒有變化,采用2、3期付款的都至多有一次改付款期數(shù)的機(jī)會,其中采用2期付款的只能改為3期,概率為;采用3期付款的只能改為2期,概率為.數(shù)碼城銷售一臺該平板電腦,實(shí)際付款期數(shù)與利潤(元)的關(guān)系為

          1

          2

          3

          η

          200

          250

          300

          (3)求的分布列及期望E().

           

          查看答案和解析>>

          同步練習(xí)冊答案