日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知橢圓的離心率為
          2
          2
          ,準線方程為x=±8,求這個橢圓的標準方程;
          (2)假設(shè)你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.
          分析:(1)設(shè)出橢圓的標準方程,利用橢圓的離心率為
          2
          2
          ,準線方程為x=±8,建立方程組,可求幾何量,即可得到橢圓的標準方程;
          (2)建立平面直角坐標系,確定父親在離開家前能得到報紙的事件構(gòu)成區(qū)域,以面積為測度,可得結(jié)論.
          解答:解:(1)設(shè)橢圓的標準方程為
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)
          ∵橢圓的離心率為
          2
          2
          ,準線方程為x=±8
          c
          a
          =
          2
          2
          a2
          c
          =8

          ∴a=4
          2
          ,c=4,∴b2=a2-c2=16
          ∴橢圓的標準方程為
          x2
          32
          +
          y2
          16
          =1

          (2)以橫坐標表示報紙送到時間,以縱坐標表示父親離家時間,建立平面直角坐標系,父親在離開家前能得到報紙的事件構(gòu)成區(qū)域是下圖:
           由于隨機試驗落在方形區(qū)域內(nèi)任何一點是等可能的,所以符合幾何概型的條件.
          根據(jù)題意,只要點落到陰影部分,就表示父親在離開家前能得到報紙,即事件A發(fā)生,
          所以P(A)=
          1-
          1
          2
          ×
          1
          2
          ×
          1
          2
          1
          =
          7
          8
          點評:本題考查橢圓的標準方程,考查幾何概型,考查學生的計算能力,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (2012•淮南二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1,(a>b>0)與雙曲4x2-
          4
          3
          y2=1有相同的焦點,且橢C的離心e=
          1
          2
          ,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013屆福建省高二第一學期期末考試理科數(shù)學試卷 題型:解答題

          已知橢圓E的下焦點為、上焦點為,其離心 率。過焦點F2且與軸不垂直的直線l交橢圓于A、B兩點。

          (1)求實數(shù)的值;  

          (2)求DABOO為原點)面積的最大值.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年安徽省淮南市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          同步練習冊答案