日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若向量
          a
          ,
          b
          滿足|
          a
          |=1,|
          b
          |=2
          ,且
          a
          b
          的夾角為
          3
          ,則|
          a
          +
          b
          |
          =
          3
          3
          分析:要求兩個(gè)向量的和的模長,首先求兩個(gè)向量的和的平方再開方,根據(jù)多項(xiàng)式運(yùn)算的性質(zhì),代入所給的模長和夾角,求出結(jié)果,注意最后結(jié)果要開方.
          解答:解:∵|
          a
          |=1,|
          b
          |=2
          a
          b
          的夾角為
          3

          |
          a
          +
          b
          |
          =
          (
          a
          +
          b
          )2
          =
          a
          2
          +
          b
          2
          +2
          a
          b
          =
          12+22+2×1×2×(-
          1
          2
          )
          =
          3

          故答案為:
          3
          點(diǎn)評(píng):本題考查向量的和的模長運(yùn)算,考查兩個(gè)向量的數(shù)量積,本題是一個(gè)基礎(chǔ)題,在解題時(shí)最后不要忽略開方運(yùn)算,屬中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若向量a,b滿足|
          a
          |=|
          b
          |=1,
          a
          ,
          b
          的夾角為60°,則
          a
          a
          +
          a
          b
          =
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          下列命題中正確的有( 。
          ①若向量a與b滿足a•b<0,則a與b所成角為鈍角;
          ②若向量a與b不共線,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),則m∥n的充要條件是λ1•μ22•μ1=0;
          ③若
          OA 
          +
          OB
          +
          OC 
          =0
          ,且|
          OA 
          |=|
          OB
          |=|
          OC 
          |
          ,則△ABC是等邊三角形;
          ④若a與b非零向量,a⊥b,則|a+b|=|a-b|.
          A、②③④B、①②③C、①④D、②

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          下列有六個(gè)命題:
          (1)y=tanx在定義域上單調(diào)遞增
          (2)若向量
          a
          b
          b
          c
          ,則可知
          a
          c

          (3)函數(shù)y=4cos(2x+
          π
          6
          )
          的一個(gè)對(duì)稱點(diǎn)為(
          π
          6
          ,0)

          (4)非零向量
          a
          b
          滿足|
          a
          +
          b
          |=|
          a
          -
          b
          |
          ,則可知
          a
          b
          =0
          (5)tan(2x+
          π
          3
          )≥
          3
          的解集為[
          1
          2
          kπ,
          1
          2
          kπ+
          π
          3
          )(k∈z)

          其中真命題的序號(hào)為
          (3)(4)
          (3)(4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:崇文區(qū)二模 題型:單選題

          下列命題中正確的有(  )
          ①若向量a與b滿足a•b<0,則a與b所成角為鈍角;
          ②若向量a與b不共線,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),則mn的充要條件是λ1•μ22•μ1=0;
          ③若
          OA 
          +
          OB
          +
          OC 
          =0
          ,且|
          OA 
          |=|
          OB
          |=|
          OC 
          |
          ,則△ABC是等邊三角形;
          ④若a與b非零向量,a⊥b,則|a+b|=|a-b|.
          A.②③④B.①②③C.①④D.②

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年北京市崇文區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

          下列命題中正確的有( )
          ①若向量a與b滿足a•b<0,則a與b所成角為鈍角;
          ②若向量a與b不共線,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),則m∥n的充要條件是λ1•μ22•μ1=0;
          ③若,且,則△ABC是等邊三角形;
          ④若a與b非零向量,a⊥b,則|a+b|=|a-b|.
          A.②③④
          B.①②③
          C.①④
          D.②

          查看答案和解析>>

          同步練習(xí)冊(cè)答案